SCALING LIMITS OF TRAP MODELS

CLAUDIO LANDIM

Let $\left\{G_{N}: N \geq 1\right\}, G_{N}=\left(V_{N}, E_{N}\right)$, be a sequence of finite graphs, where V_{N} represents the set of vertices and E_{N} the set of unoriented edges. Let $\left\{W_{x}^{N}: x \in\right.$ $\left.V_{N}\right\}$ be a sequence of positive numbers.

We examine the evolution of a continuous time random walk $\left\{X_{t}^{N}: t \geq 0\right\}$ on V_{N} which waits a mean $W^{N}(x)=W_{x}^{N}$ exponential time at site x and then jumps to one of its neighbors with equal probability. The value of W_{x}^{N} is interpreted as the depth of the trap at x. We prove that in the ergodic scale the process converges to an heterogeneous K-process.

