Hyperbolic Scaling Limits in a Regime of Shock Waves A Synthesis of Probabilistic and PDE Techniques **Vivát TADAHISA!!!**

József Fritz, TU Budapest

Kochi: December 5, 2011

Historical Notes (Hyperbolic systems)

C.Morrey (1955): Idea of scaling limits for mechanical models.

R.L.Dobrushin + coworkers (1980–85): One-dimensional hard rods and harmonic oscillators. Continuum of conservation laws.

H.Rost (1981): Asymmetric exclusion \rightarrow rarefaction waves.

F.Rezakhanlou (1991): Coupling techniques for general attractive systems in a regime of shock waves. Single conservation laws only.

H.-T. Yau (1991) + Olla - Varadhan - Yau (1993): Preservation of local equilibrium in a smooth regime via the method of relative entropy. Hamiltonian dynamics with conservative, diffusive noise.

JF (2001–): Stochastic theory of compensated compactness. Further results with B. Tóth, Kati Nagy and C. Bahadoran. Shocks, non - attractive models, couples of conservation laws.

 The Anharmonic Chain with Conservative Noise. Physical and Artificial Viscosity. Ginzburg - Landau perturbation.

- ► The Anharmonic Chain with Conservative Noise. Physical and Artificial Viscosity. Ginzburg Landau perturbation.
- Replacement of Microscopic Currents by their Equilibrium Estimators via Logarithmic Sobolev Inequalities.

- ► The Anharmonic Chain with Conservative Noise. Physical and Artificial Viscosity. Ginzburg Landau perturbation.
- Replacement of Microscopic Currents by their Equilibrium Estimators via Logarithmic Sobolev Inequalities.
- Imitation of the Vanishing Viscosity Limit: $\mathcal{L} = \mathcal{L}_0 + \sigma \mathcal{S}$.

- ► The Anharmonic Chain with Conservative Noise. Physical and Artificial Viscosity. Ginzburg Landau perturbation.
- Replacement of Microscopic Currents by their Equilibrium Estimators via Logarithmic Sobolev Inequalities.
- Imitation of the Vanishing Viscosity Limit: $\mathcal{L} = \mathcal{L}_0 + \sigma \mathcal{S}$.
- Stochastic Theory of Compensated Compactness

- ► The Anharmonic Chain with Conservative Noise. Physical and Artificial Viscosity. Ginzburg Landau perturbation.
- Replacement of Microscopic Currents by their Equilibrium Estimators via Logarithmic Sobolev Inequalities.
- Imitation of the Vanishing Viscosity Limit: $\mathcal{L} = \mathcal{L}_0 + \sigma \mathcal{S}$.
- Stochastic Theory of Compensated Compactness
- Interacting Exclusions with Creation and Annihilation: Relaxation Scheme Replaces the missing LSI.

Hyperbolic Systems of Conservation Laws

►
$$t \ge 0, x \in \mathbb{R}, u = u(t,x), u, \Phi(u) \in \mathbb{R}^d$$
 :

$$\partial_t u(t,x) + \partial_x \Phi(u(t,x)) = 0;$$

 $\Phi' := \nabla \Phi$ has distinct real eigenvalues.

Hyperbolic Systems of Conservation Laws

•
$$t \ge 0, x \in \mathbb{R}, u = u(t,x), u, \Phi(u) \in \mathbb{R}^d$$
:

$$\partial_t u(t,x) + \partial_x \Phi(u(t,x)) = 0;$$

 $\Phi':=\nabla\Phi$ has distinct real eigenvalues.

► Lax Entropy Pairs (*h*, *J*) :

$$\partial_t h(u(t,x)) + \partial_x J(u(t,x)) = 0$$

along classical solutions if $J' = h' \Phi'$.

Hyperbolic Systems of Conservation Laws

•
$$t \ge 0, x \in \mathbb{R}, u = u(t,x), u, \Phi(u) \in \mathbb{R}^d$$
:

$$\partial_t u(t,x) + \partial_x \Phi(u(t,x)) = 0;$$

 $\Phi':=\nabla\Phi$ has distinct real eigenvalues.

► Lax Entropy Pairs (*h*, *J*) :

$$\partial_t h(u(t,x)) + \partial_x J(u(t,x)) = 0$$

along classical solutions if $J' = h' \Phi'$.

Entropy Production:

$$X(h, u) := \partial_t h(u) + \partial_x J(u) \approx 0??$$

beyond shocks in the sense of distributions.

The Vanishing Viscosity Limit

Parabolic Approximation:

$$\partial_t u_\sigma(t,x) + \partial_x \Phi(u_\sigma(t,x)) = \sigma \partial_x^2 u_\sigma(t,x);$$

 $u_{\sigma} \rightarrow u$ as $0 < \sigma \rightarrow 0$??

The Vanishing Viscosity Limit

Parabolic Approximation:

$$\partial_t u_\sigma(t,x) + \partial_x \Phi(u_\sigma(t,x)) = \sigma \partial_x^2 u_\sigma(t,x);$$

 $u_{\sigma} \rightarrow u \text{ as } 0 < \sigma \rightarrow 0$??

• A Priori Bound for Entropy Production:

$$X(h, u) = \sigma \partial_x (h'(u) \cdot \partial_x u) - \sigma (\partial_x u \cdot h''(u) \partial_x u)$$

whence $\sigma^{1/2}\partial_x u$ is bounded in L^2 if *h* is convex, but $\sigma \to 0$!!

The Vanishing Viscosity Limit

Parabolic Approximation:

$$\partial_t u_\sigma(t,x) + \partial_x \Phi(u_\sigma(t,x)) = \sigma \partial_x^2 u_\sigma(t,x);$$

 $u_{\sigma} \rightarrow u$ as $0 < \sigma \rightarrow 0$??

• A Priori Bound for Entropy Production:

$$X(h, u) = \sigma \partial_x (h'(u) \cdot \partial_x u) - \sigma (\partial_x u \cdot h''(u) \partial_x u)$$

whence $\sigma^{1/2}\partial_x u$ is bounded in L^2 if *h* is convex, but $\sigma \to 0$!!

The bound does not vanish!! WE DO NOT HAVE ANY STRONG COMPACTNESS ARGUMENT!!

Compensated Compactness

Young Measure: dΘ := dt dx θ_{t,x}(dy) represents u if θ_{t,x} is the Dirac mass at u(t,x). Hence u_σ is relative compact in a space of measures.

Compensated Compactness

- Young Measure: dΘ := dt dx θ_{t,x}(dy) represents u if θ_{t,x} is the Dirac mass at u(t,x). Hence u_σ is relative compact in a space of measures.
- ▶ F. Murat: Sending $\sigma \rightarrow 0$, the above decomposition implies

 $\theta_{t,x}(h_1J_2) - \theta_{t,x}(h_2J_1) = \theta_{t,x}(h_1)\theta_{t,x}(J_2) - \theta_{t,x}(h_2)\theta_{t,x}(J_1)$

for all couples of entropy pairs.

Compensated Compactness

- Young Measure: dΘ := dt dx θ_{t,x}(dy) represents u if θ_{t,x} is the Dirac mass at u(t,x). Hence u_σ is relative compact in a space of measures.
- ▶ F. Murat: Sending $\sigma \rightarrow 0$, the above decomposition implies

$$\theta_{t,x}(h_1J_2) - \theta_{t,x}(h_2J_1) = \theta_{t,x}(h_1)\theta_{t,x}(J_2) - \theta_{t,x}(h_2)\theta_{t,x}(J_1)$$

for all couples of entropy pairs.

L. Tartar - R. DiPerna: The limiting θ is Dirac, therefore it represents a weak solution.

The Anharmonic Chain

Configurations: ω = {(p_k, r_k) : k ∈ ℤ}, p_k, r_k ∈ ℝ are the momentum and the deformation at site k ∈ ℤ. Dynamics:

$$\dot{p_k} = V'(r_k) - V'(r_{k-1}) \quad ext{and} \quad \dot{r_k} = p_{k+1} - p_k \, ,$$

 $V(x) \approx x^2/2$ at infinity, sub - exponential growth of p_k, r_k . Generator: the Liouville operator \mathcal{L}_0 , $\partial_t \varphi(\omega(t)) = \mathcal{L}_0 \varphi(\omega)$. Hyperbolic scaling: $\pi_{\varepsilon}(t, x) := p_k(t/\varepsilon)$, $\rho_{\varepsilon}(t, x) := r_k(t/\varepsilon)$ if $|k\varepsilon - x| < \varepsilon/2$, as $0 < \varepsilon \to 0$.

The Anharmonic Chain

Configurations: ω = {(p_k, r_k) : k ∈ ℤ}, p_k, r_k ∈ ℝ are the momentum and the deformation at site k ∈ ℤ. Dynamics:

$$\dot{p_k} = V'(r_k) - V'(r_{k-1}) \quad ext{and} \quad \dot{r_k} = p_{k+1} - p_k \, ,$$

 $V(x) \approx x^2/2$ at infinity, sub - exponential growth of p_k, r_k . Generator: the Liouville operator \mathcal{L}_0 , $\partial_t \varphi(\omega(t)) = \mathcal{L}_0 \varphi(\omega)$. Hyperbolic scaling: $\pi_{\varepsilon}(t, x) := p_k(t/\varepsilon)$, $\rho_{\varepsilon}(t, x) := r_k(t/\varepsilon)$ if $|k\varepsilon - x| < \varepsilon/2$, as $0 < \varepsilon \to 0$.

• Lattice approximation to $\partial_t \pi = \partial_x V'(\rho)$, $\partial_t \rho = \partial_t \pi$??

The Anharmonic Chain

Configurations: ω = {(p_k, r_k) : k ∈ ℤ}, p_k, r_k ∈ ℝ are the momentum and the deformation at site k ∈ ℤ. Dynamics:

$$\dot{p_k} = V'(r_k) - V'(r_{k-1}) \quad ext{and} \quad \dot{r_k} = p_{k+1} - p_k \, ,$$

 $V(x) \approx x^2/2$ at infinity, sub - exponential growth of p_k, r_k . Generator: the Liouville operator \mathcal{L}_0 , $\partial_t \varphi(\omega(t)) = \mathcal{L}_0 \varphi(\omega)$. Hyperbolic scaling: $\pi_{\varepsilon}(t, x) := p_k(t/\varepsilon)$, $\rho_{\varepsilon}(t, x) := r_k(t/\varepsilon)$ if $|k\varepsilon - x| < \varepsilon/2$, as $0 < \varepsilon \to 0$.

- Lattice approximation to $\partial_t \pi = \partial_x V'(\rho)$, $\partial_t \rho = \partial_t \pi$??
- ► Classical conservation laws: p_k , r_k and $H_k := p_k^2/2 + V(r_k)$; $\partial_t H_k = p_{k+1}V'(r_k) - p_kV'(r_{k-1})$. Is there any other??

Stationary product measures: $\lambda_{\beta,\pi,\gamma}$, $p_k \sim N(\pi, 1/\beta)$, Lebesgue density of $r_k \sim e^{\gamma x - \beta V(x)}$. HDL: Compressible Euler equations?

Strong ergodic hypothesis: Description of all stationary states and conservation laws!!

Physical Viscosity

The anharmonic chain can be regularized by adding stochastic perturbations to the equations of momenta.
 Random exchange of momenta: L = L₀ + σS_{ep},

$$\mathcal{S}_{ep}\varphi(\omega) = \sum_{k\in\mathbb{Z}} (\varphi(\omega^{k,k+1}) - \varphi(\omega)),$$

$$\omega
ightarrow \omega^{k,k+1}$$
 means $p_k \leftrightarrow p_{k+1}$.

Physical Viscosity

The anharmonic chain can be regularized by adding stochastic perturbations to the equations of momenta.
 Random exchange of momenta: L = L₀ + σS_{en},

$$\mathcal{S}_{ep}\varphi(\omega) = \sum_{k\in\mathbb{Z}} (\varphi(\omega^{k,k+1}) - \varphi(\omega)),$$

 $\omega \to \omega^{k,k+1}$ means $p_k \leftrightarrow p_{k+1}$.

The classical conservation laws are OK, and the strong ergodic hypothesis (F - Funaki - Lebowitz 1994) implies the triplet of compressible Euler equations in a smooth regime with periodic boundary conditions. The asymptotic preservation of local equilibrium follows by the relative entropy argument. Ginzburg - Landau perturbation. Stochastic dynamics:

$$dp_{k} = (V'(r_{k}) - V'(r_{k-1})) dt + \sigma (p_{k+1} + p_{k-1} - 2p_{k}) dt + \sqrt{2\sigma} (dw_{k} - dw_{k-1}), \quad dr_{k} = (p_{k+1} - p_{k}) dt, \quad k \in \mathbb{Z},$$

 $\sigma > 0$ is fixed, $\{w_k : k \in \mathbb{Z}\}$ are independent Wiener processes.

Ginzburg - Landau perturbation. Stochastic dynamics:

$$dp_{k} = (V'(r_{k}) - V'(r_{k-1})) dt + \sigma (p_{k+1} + p_{k-1} - 2p_{k}) dt + \sqrt{2\sigma} (dw_{k} - dw_{k-1}), \quad dr_{k} = (p_{k+1} - p_{k}) dt, \quad k \in \mathbb{Z},$$

 $\sigma > 0$ is fixed, $\{w_k : k \in \mathbb{Z}\}$ are independent Wiener processes.

Energy is not conserved, λ_{π,γ} := λ_{1,π,γ} are stationary.
 We have convergence to classical solutions of the nonlinear sound equation of elastodynamics:

$$\partial_t \pi = \partial_x S'(\rho) \quad \text{and} \quad \partial_t \rho = \partial_x \pi$$

as $\int V'(r_k) d\lambda_{\pi,\gamma} = \gamma = S'(\rho)$ if $\int r_k d\lambda_{\pi,\gamma} = \rho = F'(\gamma)$,
 $S(\rho) := \sup_{\gamma} \{\gamma \rho - F(\gamma)\}, \ F(\gamma) := \log \int_{-\infty}^{\infty} \exp(\gamma x - V(x)) dx$.

Artificial Viscosity

In a regime of shock waves the randomness must be very strong:

$$\begin{aligned} dp_k &= (V'(r_k) - V'(r_{k-1})) \, dt + \sigma(\varepsilon) \left(p_{k+1} + p_{k-1} - 2p_k \right) dt \\ &+ \sqrt{2\sigma(\varepsilon)} \left(dw_k - dw_{k-1} \right), \quad k \in \mathbb{Z}, \\ dr_k &= \left(p_{k+1} - p_k \right) dt + \sigma(\varepsilon) \left(V'(r_{k+1}) + V'(r_{k-1}) - 2V'(r_k) \right) dt \\ &+ \sqrt{2\sigma(\varepsilon)} \left(d\tilde{w}_{k+1} - d\tilde{w}_k \right), \quad k \in \mathbb{Z}, \end{aligned}$$

where $\{w_k\}$ and $\{\tilde{w}_k\}$ are independent families of independent Wiener processes. The macroscopic viscosity: $\varepsilon\sigma(\varepsilon) \to 0$, but $\varepsilon\sigma^2(\varepsilon) \to +\infty$ as $\varepsilon \to 0$.

Artificial Viscosity

In a regime of shock waves the randomness must be very strong:

$$\begin{aligned} dp_k &= (V'(r_k) - V'(r_{k-1})) \, dt + \sigma(\varepsilon) \left(p_{k+1} + p_{k-1} - 2p_k \right) dt \\ &+ \sqrt{2\sigma(\varepsilon)} \left(dw_k - dw_{k-1} \right), \quad k \in \mathbb{Z}, \\ dr_k &= \left(p_{k+1} - p_k \right) dt + \sigma(\varepsilon) \left(V'(r_{k+1}) + V'(r_{k-1}) - 2V'(r_k) \right) dt \\ &+ \sqrt{2\sigma(\varepsilon)} \left(d\tilde{w}_{k+1} - d\tilde{w}_k \right), \quad k \in \mathbb{Z}, \end{aligned}$$

where $\{w_k\}$ and $\{\tilde{w}_k\}$ are independent families of independent Wiener processes. The macroscopic viscosity: $\varepsilon\sigma(\varepsilon) \to 0$, but $\varepsilon\sigma^2(\varepsilon) \to +\infty$ as $\varepsilon \to 0$.

 Conservation laws and stationary states as before: Again the sound equation is expected as the result of the hyperbolic scaling limit. Conditions on V. The substitution of the microscopic currents V'(r_k) by their equilibrium expectation S'(v) is done by means of a logarithmic Sobolev inequality, thus V must be strictly convex.

- Conditions on V. The substitution of the microscopic currents V'(r_k) by their equilibrium expectation S'(v) is done by means of a logarithmic Sobolev inequality, thus V must be strictly convex.
- ► The genuine nonlinearity of its flux is a condition for existence of weak solutions to the sound equation, that is S'''(v) = 0 can not have more that one root. In terms of V this follows from the same property of V''', but there are other examples, too. In particular if V is symmetric then V' should be strictly convex or concave on the half - line R₊.

- Conditions on V. The substitution of the microscopic currents V'(r_k) by their equilibrium expectation S'(v) is done by means of a logarithmic Sobolev inequality, thus V must be strictly convex.
- ► The genuine nonlinearity of its flux is a condition for existence of weak solutions to the sound equation, that is S'''(v) = 0 can not have more that one root. In terms of V this follows from the same property of V''', but there are other examples, too. In particular if V is symmetric then V' should be strictly convex or concave on the half - line R₊.
- A technical condition of asymptotic normality is also needed:
 V"(x) converges at an exponential rate as x → ±∞.

- Conditions on V. The substitution of the microscopic currents V'(r_k) by their equilibrium expectation S'(v) is done by means of a logarithmic Sobolev inequality, thus V must be strictly convex.
- ► The genuine nonlinearity of its flux is a condition for existence of weak solutions to the sound equation, that is S'''(v) = 0 can not have more that one root. In terms of V this follows from the same property of V''', but there are other examples, too. In particular if V is symmetric then V' should be strictly convex or concave on the half - line R₊.
- A technical condition of asymptotic normality is also needed:
 V"(x) converges at an exponential rate as x → ±∞.
- Our only hypothesis on the initial distribution is the entropy bound: $S[\mu_{0,\varepsilon,n}|\lambda_{0,0}] = O(n)$, where $\mu_{t,\varepsilon,n}$ denotes the joint distribution of the variables $\{(p_k(t), r_k(t)) : |k| \le n\}$, and $S[\mu|\lambda] := \int \log f \, d\mu$, $f = d\mu/d\lambda$.

Main Result. The distributions P_ε of the empirical process (π_ε, ρ_ε) form a tight family with respect to the weak topology of the C space of trajectories, and its limit distributions are all concentrated on a set of weak solutions to the sound equation.

- Main Result. The distributions P_ε of the empirical process (π_ε, ρ_ε) form a tight family with respect to the weak topology of the C space of trajectories, and its limit distributions are all concentrated on a set of weak solutions to the sound equation.
- The notion of weak convergence above changes from step to step of the argument. We start with the Young measure of the block - averaged empirical process (π̂_ε, ρ̂_ε), finally we get tightness in the strong local L^p(ℝ²₊) topology if p < 2.</p>

- Main Result. The distributions P_ε of the empirical process (π_ε, ρ_ε) form a tight family with respect to the weak topology of the C space of trajectories, and its limit distributions are all concentrated on a set of weak solutions to the sound equation.
- The notion of weak convergence above changes from step to step of the argument. We start with the Young measure of the block - averaged empirical process (π̂_ε, ρ̂_ε), finally we get tightness in the strong local L^p(ℝ²₊) topology if p < 2.</p>
- Compensated compactness is the most relevant keyword of the proofs, results by J. Shearer (1994) and Serre - Shearer (1994) are applied at the end.

- Main Result. The distributions P_ε of the empirical process (π_ε, ρ_ε) form a tight family with respect to the weak topology of the C space of trajectories, and its limit distributions are all concentrated on a set of weak solutions to the sound equation.
- The notion of weak convergence above changes from step to step of the argument. We start with the Young measure of the block - averaged empirical process (π̂_ε, ρ̂_ε), finally we get tightness in the strong local L^p(ℝ²₊) topology if p < 2.</p>
- Compensated compactness is the most relevant keyword of the proofs, results by J. Shearer (1994) and Serre - Shearer (1994) are applied at the end.
- In the case of systems the uniqueness of the hydrodynamic limit is still a formidable open problem, we are not able to prove the desired local bounds for our stochastic models.

On the ideas of the proof

The Main Steps. We follow the argumentation of the vanishing viscosity approach. There is a rich family of Lax entropy pairs (h, J), entropy production X_ε := ∂_th(π̂_ε, ρ̂_ε) + ∂_xJ(π̂_ε, ρ̂_ε) is considered as a generalized function.

On the ideas of the proof

- The Main Steps. We follow the argumentation of the vanishing viscosity approach. There is a rich family of Lax entropy pairs (h, J), entropy production X_ε := ∂_th(π̂_ε, ρ̂_ε) + ∂_xJ(π̂_ε, ρ̂_ε) is considered as a generalized function.
- ▶ First difficulty: to identify the macroscopic flux *J* in the microscopic expression of *L*₀*h*, and to show that the remainders do vanish in the limit.

On the ideas of the proof

- The Main Steps. We follow the argumentation of the vanishing viscosity approach. There is a rich family of Lax entropy pairs (h, J), entropy production X_ε := ∂_th(π̂_ε, ρ̂_ε) + ∂_xJ(π̂_ε, ρ̂_ε) is considered as a generalized function.
- ► First difficulty: to identify the macroscopic flux J in the microscopic expression of L₀h, and to show that the remainders do vanish in the limit.
- Replace block averages of the microscopic currents of momenta with their equilibrium expectations via LSI. It is based on our a priori bounds on relative entropy and its Dirichlet form.

On the ideas of the proof

- The Main Steps. We follow the argumentation of the vanishing viscosity approach. There is a rich family of Lax entropy pairs (h, J), entropy production X_ε := ∂_th(π̂_ε, ρ̂_ε) + ∂_xJ(π̂_ε, ρ̂_ε) is considered as a generalized function.
- ► First difficulty: to identify the macroscopic flux J in the microscopic expression of L₀h, and to show that the remainders do vanish in the limit.
- Replace block averages of the microscopic currents of momenta with their equilibrium expectations via LSI. It is based on our a priori bounds on relative entropy and its Dirichlet form.
- Recover at the microscopic (mesoscopic) level the basic structure of the vanishing viscosity limit.

On the ideas of the proof

- The Main Steps. We follow the argumentation of the vanishing viscosity approach. There is a rich family of Lax entropy pairs (h, J), entropy production X_ε := ∂_th(π̂_ε, ρ̂_ε) + ∂_xJ(π̂_ε, ρ̂_ε) is considered as a generalized function.
- ► First difficulty: to identify the macroscopic flux J in the microscopic expression of L₀h, and to show that the remainders do vanish in the limit.
- Replace block averages of the microscopic currents of momenta with their equilibrium expectations via LSI. It is based on our a priori bounds on relative entropy and its Dirichlet form.
- Recover at the microscopic (mesoscopic) level the basic structure of the vanishing viscosity limit.
- Launch the stochastic theory of compensated compactness.

The a Priori Bounds

The Entropy Bound and LSI. The initial condition implies that

$$S[\mu_{t,\varepsilon,n}|\lambda_{0,0}] + \sigma(\varepsilon) \int_0^t D[\mu_{s,\varepsilon,n}|\lambda_{0,0}] ds \le C(t+n)$$

for all t, n, ε with the same constant C; $f_n := d\mu_{t,\varepsilon,n}/d\lambda_{0,0}$,

$$D := \sum_{k=-n}^{n-1} \int (\nabla_1 \partial_k \sqrt{f_n})^2 d\lambda + \sum_{k=-n}^{n-1} \int (\nabla_1 \tilde{\partial}_k \sqrt{f_n})^2 d\lambda,$$

 $abla_\ell \xi_k := (1/\ell) (\xi_{k+\ell} - \xi_k) \,, \, \partial_k := \partial/\partial p_k \, \, ext{and} \, \, ilde{\partial}_k := \partial/\partial r_k \,.$

The a Priori Bounds

The Entropy Bound and LSI. The initial condition implies that

$$S[\mu_{t,\varepsilon,n}|\lambda_{0,0}] + \sigma(\varepsilon) \int_0^t D[\mu_{s,\varepsilon,n}|\lambda_{0,0}] \, ds \le C \, (t+n)$$

for all t, n, ε with the same constant C; $f_n := d\mu_{t,\varepsilon,n}/d\lambda_{0,0}$,

$$D := \sum_{k=-n}^{n-1} \int (\nabla_1 \partial_k \sqrt{f_n})^2 \, d\lambda + \sum_{k=-n}^{n-1} \int (\nabla_1 \tilde{\partial}_k \sqrt{f_n})^2 \, d\lambda \,,$$

 $abla_\ell \xi_k := (1/\ell)(\xi_{k+\ell} - \xi_k), \ \partial_k := \partial/\partial p_k \ \text{and} \ \widetilde{\partial}_k := \partial/\partial r_k.$

 Since V is convex, the following LSI holds true. Given
 *r*_{ℓ,k} = v , let μ^ρ_{ℓ,k} and λ^ρ_{ℓ,k} denote the conditional distributions
 of the variables r_k, r_{k-1},..., r_{k-ℓ+1}, and set
 f^v_{ℓ,k} := dμ^ρ_{ℓ,k}/dλ^ρ_{ℓ,k}, then

$$\int \log f_{\ell,k}^\rho \, d\mu_{\ell,k}^\rho \leq \ell^2 C_{\mathsf{lsi}} \sum_{j=k-\ell+1}^{k-1} \int \left(\nabla_1 \tilde{\partial}_k (f_{\ell,k}^\rho)^{1/2} \right)^2 \, d\lambda_{\ell,k}^\rho \, .$$

Replacement of the microscopic flux. Combining LSI and the entropy inequality ∫ φ dμ ≤ S[μ|λ] + log ∫ e^φ dλ we get

$$\sum_{|k| < n} \int_0^t \int \left(\bar{V}'_{\ell,k} - S'(\bar{r}_{\ell,k}) \right)^2 \, d\mu_{s,\varepsilon} \, ds \leq C_1 \left(\frac{nt}{\ell} + \frac{n\ell^2}{\sigma(\varepsilon)} \right) \, ,$$

where $\bar{\xi}_{\ell,k} := (\xi_k + \xi_{k-1} + \dots + \xi_{k-\ell+1})/\ell$, e.g. $V'_k = V'(r_k)$. Similar bounds control the differences $\bar{r}_{\ell,k+\ell} - \bar{r}_{\ell,k}$ and $\hat{r}_{\ell,k} - \bar{r}_{\ell,k}$. Replacement of the microscopic flux. Combining LSI and the entropy inequality ∫ φ dμ ≤ S[μ|λ] + log ∫ e^φ dλ we get

$$\sum_{|k| < n} \int_0^t \int \left(\bar{V}'_{\ell,k} - S'(\bar{r}_{\ell,k}) \right)^2 \, d\mu_{s,\varepsilon} \, ds \leq C_1 \left(\frac{nt}{\ell} + \frac{n\ell^2}{\sigma(\varepsilon)} \right) \, ,$$

where
$$\bar{\xi}_{\ell,k} := (\xi_k + \xi_{k-1} + \dots + \xi_{k-\ell+1})/\ell$$
, e.g.
 $V'_k = V'(r_k)$. Similar bounds control the differences
 $\bar{r}_{\ell,k+\ell} - \bar{r}_{\ell,k}$ and $\hat{r}_{\ell,k} - \bar{r}_{\ell,k}$.

Entropy production X_ε is written in terms of the "mollified" block averages ξ_{ℓ,k}, these are defined by means of a triangular weight function. Mesoscopic blocks of size ℓ = ℓ(ε) are used:

$$\lim_{\varepsilon \to 0} \, \frac{\ell(\varepsilon)}{\sigma(\varepsilon)} = 0 \quad \text{and} \quad \lim_{\varepsilon \to 0} \, \frac{\varepsilon \ell^3(\varepsilon)}{\sigma(\varepsilon)} = +\infty \, .$$

Lax Entropy Pairs

• One critical term of X_{ε} can be computed as

$$egin{aligned} & X_{0,k} := \mathcal{L}_0 h(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) + J(\hat{p}_{\ell,k+1},\hat{r}_{\ell,k+1}) - J(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) \ & pprox h_u'(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) (\hat{V}_{\ell,k}' - \hat{V}_{\ell,k-1}') + h_v'(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) (\hat{p}_{\ell,k+1} - \hat{p}_{\ell,k}) \ & + J_u'(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) (\hat{p}_{\ell,k+1} - \hat{p}_{\ell,k}) + J_v'(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) (\hat{r}_{\ell,k+1} - \hat{r}_{\ell,k}). \end{aligned}$$

Lax Entropy Pairs

One critical term of X_ε can be computed as

$$egin{aligned} X_{0,k} &:= \mathcal{L}_0 h(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) + J(\hat{p}_{\ell,k+1},\hat{r}_{\ell,k+1}) - J(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) \ &pprox h_u'(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) (\hat{V}_{\ell,k}' - \hat{V}_{\ell,k-1}') + h_v'(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) (\hat{p}_{\ell,k+1} - \hat{p}_{\ell,k}) \ &+ J_u'(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) (\hat{p}_{\ell,k+1} - \hat{p}_{\ell,k}) + J_v'(\hat{p}_{\ell,k},\hat{r}_{\ell,k}) (\hat{r}_{\ell,k+1} - \hat{r}_{\ell,k}) \,. \end{aligned}$$

• Since
$$h'_{\pi}(\pi,\rho)S''(\rho) + J'_{\rho}(\pi,\rho) = h'_{\rho}(\pi,\rho) + J'_{\pi}(\pi,\rho) = 0$$

$$X_{0,k} pprox h'_{u}(\hat{\pi}_{\ell,k},\hat{
ho}_{I,k}) \left(\hat{V}'_{\ell,k} - \hat{V}'_{\ell,k-1} - S''(\hat{r}_{\ell,k})(\hat{r}_{\ell,k+1} - \hat{r}_{\ell,k})
ight).$$

Observe now that $\hat{\xi}_{\ell,k+1} - \hat{\xi}_{\ell,k} = (1/\ell)(\bar{\xi}_{\ell,k+\ell} - \bar{\xi}_{\ell,k})$, thus the substitution $\bar{V}'_{\ell,k} \approx S'(\bar{r}_{\ell,k})$ results in $X_{0,k} \approx 1/\ell$. In fact $(\varepsilon \ell(\varepsilon)\sigma(\varepsilon))^{-1}$ is the order of the replacement error; that is why we need?? $\varepsilon \sigma^2(\varepsilon) \to +\infty$ and the sharp explicit bounds provided by the logarithmic Sobolev inequality.

Stochastic Compensated Compactness

For Lax entropy pairs (h, J) set

$$X_{\varepsilon}(\psi,h) := -\int_0^{\infty} \int_{-\infty}^{\infty} \left(h(\hat{u}_{\varepsilon})\psi_t'(t,x) + J(\hat{u}_{\varepsilon})\psi_x'(t,x)\right) \, dx \, dt \, ,$$

where $u_{\varepsilon} = (\pi, \rho)$, and the test function ψ is compactly supported in the interior of \mathbb{R}^2_+ . Another test function ϕ localizes X. An entropy pair (h, J) is well controlled if X_{ε} decomposes as $X_{\varepsilon}(\psi, h) = Y_{\varepsilon}(\psi, h) + Z_{\varepsilon}(\psi, h)$, and we have two random functionals $A_{\varepsilon}(\phi, h)$ and $B_{\varepsilon}(\phi, h)$ such that

 $|Y_{arepsilon}(\psi\phi,h)| \leq A_{arepsilon}(\phi,h) \|\psi\|_{+} \quad ext{and} \quad |Z_{arepsilon}(\psi,h)| \leq B_{arepsilon}(\phi,h) \|\psi\| \,:$

 $\lim \mathsf{E} A_{\varepsilon}(\phi,h) = 0 \text{ and } \limsup \mathsf{E} B_{\varepsilon}(\phi,h) < +\infty \text{ as } \varepsilon \to 0 \,.$

The Young family Θ is defined as dΘ_ε := dt dx θ_{ε,t,x}(du), where θ_{ε,t,x} is the Dirac mass at the actual value of û_ε.

- The Young family Θ is defined as dΘ_ε := dt dx θ_{ε,t,x}(du), where θ_{ε,t,x} is the Dirac mass at the actual value of û_ε.
- If (h₁, J₁) and (h₂, J₂) are well controlled entropy pairs with bounded second derivatives then the Div - Curl lemma holds true:

$$\theta_{t,x}(h_1J_2) - \theta_{t,x}(h_2J_1) = \theta_{t,x}(h_1)\theta_{t,x}(J_2) - \theta_{t,x}(h_2)\theta_{t,x}(J_1)$$

a.s. with respect to any limit distribution of P_{ε} as $\varepsilon \to 0$.

- The Young family Θ is defined as dΘ_ε := dt dx θ_{ε,t,x}(du), where θ_{ε,t,x} is the Dirac mass at the actual value of û_ε.
- If (h₁, J₁) and (h₂, J₂) are well controlled entropy pairs with bounded second derivatives then the Div - Curl lemma holds true:

$$\theta_{t,x}(h_1J_2) - \theta_{t,x}(h_2J_1) = \theta_{t,x}(h_1)\theta_{t,x}(J_2) - \theta_{t,x}(h_2)\theta_{t,x}(J_1)$$

a.s. with respect to any limit distribution of P_{ε} as $\varepsilon \to 0$.

Now we are in a position to refer to the papers by J. Shearer and Serre - Shearer on an L^p theory of compensated compactness. The Dirac property of the Young measure follows by means of their moderately increasing entropy families.

• Charged particles: $\omega = (\omega_k = 0, \pm 1 : k \in \mathbb{Z}), \ \eta_k := \omega_k^2$.

$$\mathcal{L}_0\varphi(\omega) = \frac{1}{2} \sum_{k\in\mathbb{Z}} (\eta_k + \eta_{k+1} + \omega_k - \omega_{k+1}) (\varphi(\omega^{k,k+1}) - \varphi(\omega)).$$

• Charged particles: $\omega = (\omega_k = 0, \pm 1 : k \in \mathbb{Z}), \ \eta_k := \omega_k^2$.

$$\mathcal{L}_0\varphi(\omega) = \frac{1}{2} \sum_{k \in \mathbb{Z}} (\eta_k + \eta_{k+1} + \omega_k - \omega_{k+1}) (\varphi(\omega^{k,k+1}) - \varphi(\omega)).$$

► Conservation laws: $\mathcal{L}_0 \omega_k = j_{k-1}^{\omega} - j_k^{\omega}$ and $\mathcal{L}_0 \eta = j_{k-1}^{\eta} - j_k^{\eta}$, where

$$\begin{split} \mathfrak{j}_{k}^{\omega} &:= (1/2) \left(\eta_{k} + \eta_{k+1} - 2\omega_{k}\omega_{k+1} + \omega_{k}\eta_{k+1} - \eta_{k}\omega_{k+1} \right) \\ &+ (1/2) (\eta_{k} - \eta_{k+1}) \,, \\ \mathfrak{j}_{k}^{\eta} &:= (1/2) \left(\omega_{k} + \omega_{k+1} - \omega_{k}\eta_{k+1} - \eta_{k}\omega_{k+1} + \eta_{k} - \eta_{k+1} \right) \,. \end{split}$$

• Charged particles: $\omega = (\omega_k = 0, \pm 1 : k \in \mathbb{Z}), \ \eta_k := \omega_k^2$.

$$\mathcal{L}_0\varphi(\omega) = \frac{1}{2} \sum_{k \in \mathbb{Z}} (\eta_k + \eta_{k+1} + \omega_k - \omega_{k+1}) (\varphi(\omega^{k,k+1}) - \varphi(\omega)).$$

► Conservation laws: $\mathcal{L}_0 \omega_k = j_{k-1}^{\omega} - j_k^{\omega}$ and $\mathcal{L}_0 \eta = j_{k-1}^{\eta} - j_k^{\eta}$, where

$$\begin{split} \mathfrak{j}_{k}^{\omega} &:= (1/2) \left(\eta_{k} + \eta_{k+1} - 2\omega_{k}\omega_{k+1} + \omega_{k}\eta_{k+1} - \eta_{k}\omega_{k+1} \right) \\ &+ (1/2) (\eta_{k} - \eta_{k+1}) \,, \\ \mathfrak{j}_{k}^{\eta} &:= (1/2) \left(\omega_{k} + \omega_{k+1} - \omega_{k}\eta_{k+1} - \eta_{k}\omega_{k+1} + \eta_{k} - \eta_{k+1} \right) \,. \end{split}$$

• All Bernoulli measures $\lambda_{u,\rho}$ are stationary: $\int \omega_k d\lambda_{u,\rho} = u$ and $\int \eta_k d\lambda_{u,\rho} = \rho$. $\int j_k^{\omega} d\lambda_{u,\rho} = \rho - u^2$ and $\int j_k^{\eta} d\lambda_{u,\rho} = u - u\rho$.

• Charged particles: $\omega = (\omega_k = 0, \pm 1 : k \in \mathbb{Z}), \ \eta_k := \omega_k^2$.

$$\mathcal{L}_0\varphi(\omega) = \frac{1}{2} \sum_{k \in \mathbb{Z}} (\eta_k + \eta_{k+1} + \omega_k - \omega_{k+1}) (\varphi(\omega^{k,k+1}) - \varphi(\omega)).$$

► Conservation laws: $\mathcal{L}_0 \omega_k = j_{k-1}^{\omega} - j_k^{\omega}$ and $\mathcal{L}_0 \eta = j_{k-1}^{\eta} - j_k^{\eta}$, where

$$\begin{split} \mathfrak{j}_{k}^{\omega} &:= (1/2) \left(\eta_{k} + \eta_{k+1} - 2\omega_{k}\omega_{k+1} + \omega_{k}\eta_{k+1} - \eta_{k}\omega_{k+1} \right) \\ &+ (1/2) (\eta_{k} - \eta_{k+1}) \,, \\ \mathfrak{j}_{k}^{\eta} &:= (1/2) \left(\omega_{k} + \omega_{k+1} - \omega_{k}\eta_{k+1} - \eta_{k}\omega_{k+1} + \eta_{k} - \eta_{k+1} \right) \end{split}$$

- All Bernoulli measures $\lambda_{u,\rho}$ are stationary: $\int \omega_k d\lambda_{u,\rho} = u$ and $\int \eta_k d\lambda_{u,\rho} = \rho$. $\int j_k^{\omega} d\lambda_{u,\rho} = \rho - u^2$ and $\int j_k^{\eta} d\lambda_{u,\rho} = u - u\rho$.
- ▶ The hyperbolic scaling limit for $u \sim \bar{\omega}_{\ell,k}$ and $\rho \sim \bar{\eta}_{\ell,k}$ yields:

$$\partial_t u + \partial_x (\rho - u^2) = 0$$
, $\partial_t \rho + \partial_x (u - u\rho) = 0$ (Leroux)
F - Tóth (2004).

Creation and Annihilation

The action $\omega \to \omega^{k+}$ of creation means that $(\omega_k, \omega_{k+1}) \to (1, -1)$ if $\omega_k = \omega_{k+1} = 0$, while annihilation $\omega \to \omega^{k-}$ is defined by $(\omega_k, \omega_{k+1}) \to (0, 0)$ if $\omega_k = 1$ and $\omega_{k+1} = -1$. The generator of the composed process reads as $\mathcal{L}^* = \mathcal{L}_0 + \beta \mathcal{G}^*$, where $\beta > 0$ and

$$egin{aligned} \mathcal{G}^*arphi(\omega) &:= \sum_{k\in\mathbb{Z}} (1-\eta_k)(1-\eta_{k+1})(arphi(\omega^{k+})-arphi(\omega)) \ &+ rac{1}{4}\sum_{k\in\mathbb{Z}} (\eta_k+\omega_k)(\eta_{k+1}-\omega_{k+1})(arphi(\omega^{k-})-arphi(\omega))\,. \end{aligned}$$

Creation - annihilation violates the conservation of particle number. The product measure $\lambda_{u,\rho}$ will be stationary if

$$\lambda_{u,\rho}[\omega_k = 0, \omega_{k+1} = 0] = \lambda_{u,\rho}[\omega_k = 1, \omega_{k+1} = -1]$$
, whence
 $ho = F(u) := (1/3)(4 - \sqrt{4 - 3u^2})$

is the criterion of equilibrium because the second root:

$$\tilde{F}(u) := (1/3)(4 + \sqrt{4 - 3u^2}) \ge 5/3 > 1$$
.

► Equilibrium Expectations. \u03c8^{*}_u := \u03c8_{u,F(u)}, |u| < 1 is the family of our stationary product measures:</p>

$$\int \omega_k \, d\lambda_u^* = u \,, \, \int \eta_k \, d\lambda_u^* = F(u) \text{ and } \int \mathfrak{j}_k^\omega \, d\lambda_u^* = F(u) - u^2 \,.$$

Equilibrium Expectations. λ^u_u := λ_{u,F(u)}, |u| < 1 is the family of our stationary product measures: ∫ ω_k dλ^{*}_u = u, ∫ η_k dλ^{*}_u = F(u) and ∫ j^ω_k dλ^{*}_u = F(u) - u².
G^{*}ω_k = j^{ω*}_{k-1} - j^{ω*}_k is also a difference of currents: j^{ω*}_k(ω) := (1/4)(η_k + ω_k)(η_{k+1} - ω_{k+1}) - (1 - η_k)(1 - η_{k+1}), and ∫ j^{ω*}_k dλ_{u,ρ} = C(u,ρ) := (3/4)(ρ - F(u))(F̃(u) - ρ).

Equilibrium Expectations. λ^{*}_u := λ_{u,F(u)}, |u| < 1 is the family of our stationary product measures: ∫ ω_k dλ^{*}_u = u, ∫ η_k dλ^{*}_u = F(u) and ∫ j^ω_k dλ^{*}_u = F(u) - u².
G^{*}ω_k = j^{ω*}_{k-1} - j^{ω*}_k is also a difference of currents: j^{ω*}_k(ω) := (1/4)(η_k + ω_k)(η_{k+1} - ω_{k+1}) - (1 - η_k)(1 - η_{k+1}), and ∫ j^{ω*}_k dλ_{u,ρ} = C(u,ρ) := (3/4)(ρ - F(u))(F̃(u) - ρ).
Therefore

$$\partial_t u(t,x) + \partial_x (F(u) - u^2) = 0$$
 (CreAnni)

is the expected result of the hyperbolic scaling limit.

Equilibrium Expectations. λ^{*}_u := λ_{u,F(u)}, |u| < 1 is the family of our stationary product measures: ∫ ω_k dλ^{*}_u = u, ∫ η_k dλ^{*}_u = F(u) and ∫ j^ω_k dλ^{*}_u = F(u) - u².
G^{*}ω_k = j^{ω*}_{k-1} - j^{ω*}_k is also a difference of currents: j^{ω*}_k(ω) := (1/4)(η_k + ω_k)(η_{k+1} - ω_{k+1}) - (1 - η_k)(1 - η_{k+1}), and ∫ j^{ω*}_k dλ_{u,ρ} = C(u,ρ) := (3/4)(ρ - F(u))(F̃(u) - ρ).
Therefore

$$\partial_t u(t,x) + \partial_x (F(u) - u^2) = 0$$
 (CreAnni)

is the expected result of the hyperbolic scaling limit.

 Simply substitute ρ = F(u) into the first equation of the Leroux system. Hyperbolic scaling: G* has no contribution. Navier - Stokes correction??

Main Result

Since we do not want to postulate the smoothness of the macroscopic solution, the basic process is regularized by an overall stirring S_e, the full generator reads as L := L* + σ(ε) S_e, and the theory of compensated compactness is applied.

Main Result

- Since we do not want to postulate the smoothness of the macroscopic solution, the basic process is regularized by an overall stirring S_e, the full generator reads as L := L* + σ(ε) S_e, and the theory of compensated compactness is applied.
- Assume that the initial distributions satisfy

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{k \in \mathbb{Z}} \varphi(\varepsilon k) \omega_k(0) = \int_{-\infty}^{\infty} \psi(x) u_0(x) \, dx$$

in probability for all compactly supported $\varphi \in C(\mathbb{R})$.

Main Result

- Since we do not want to postulate the smoothness of the macroscopic solution, the basic process is regularized by an overall stirring S_e, the full generator reads as L := L* + σ(ε) S_e, and the theory of compensated compactness is applied.
- Assume that the initial distributions satisfy

$$\lim_{\varepsilon \to 0} \varepsilon \sum_{k \in \mathbb{Z}} \varphi(\varepsilon k) \omega_k(0) = \int_{-\infty}^{\infty} \psi(x) u_0(x) \, dx$$

in probability for all compactly supported $\varphi \in \mathcal{C}(\mathbb{R})$.

The artificial viscosity σ(ε) and the size ℓ = ℓ(ε) of the mesoscopic block averages are the same as before. Our empirical process is defined as û_ε(t, x) := û_{ℓ,k}(t/ε) if |εk - x| < ε/2.</p>

▶ With C. Bahadoran and K. Nagy (EJP 2011) we prove that

$$\lim_{\varepsilon \to 0} \mathsf{E} \int_0^\tau \int_{-r}^r |u(t,x) - \hat{u}_{\varepsilon}(t,x)| \, dx \, dt = 0$$

for all $r, \tau > 0$, where u is the uniquely specified weak entropy solution to the CreAnni equation with initial value u_0 .

▶ With C. Bahadoran and K. Nagy (EJP 2011) we prove that

$$\lim_{\varepsilon \to 0} \mathsf{E} \int_0^\tau \int_{-r}^r |u(t,x) - \hat{u}_\varepsilon(t,x)| \, dx \, dt = 0$$

for all $r, \tau > 0$, where u is the uniquely specified weak entropy solution to the CreAnni equation with initial value u_0 .

The coefficient β > 0 needs not be a constant, it is sufficient to assume that εσ²(ε)β⁻⁴(ε) → +∞ and σ(ε)β(ε) → +∞ as ε → 0.

▶ With C. Bahadoran and K. Nagy (EJP 2011) we prove that

$$\lim_{\varepsilon \to 0} \mathsf{E} \int_0^\tau \int_{-r}^r |u(t,x) - \hat{u}_\varepsilon(t,x)| \, dx \, dt = 0$$

for all $r, \tau > 0$, where u is the uniquely specified weak entropy solution to the CreAnni equation with initial value u_0 .

- The coefficient β > 0 needs not be a constant, it is sufficient to assume that εσ²(ε)β⁻⁴(ε) → +∞ and σ(ε)β(ε) → +∞ as ε → 0.
- ► The proof follows the standard technology of the stochastic theory of compensated compactness, the entropy production for entropy pairs (*h*, *J*) of equation CreAnni has to be evaluated. However, the present logarithmic Sobolev inequality is not sufficient for the identification of ∂_x*J* in the stochastic equation of *h*.

Main Steps of the Proof

 Entropy Production. The local bound on relative entropy and an LSI involving S_e allow us to do the replacements *j*_{ℓ,k} ≈ ℑ(*ω*_{ℓ,k}, *η*_{ℓ,k}) : *ℑ* = ρ - u², ℑ = u - uρ and ℑ = C(u, ρ) if j = j^ω, j = j^η and j = j^{ω*}, respectively. The explicit form of the bounds is the same as for V̄' above.

Main Steps of the Proof

- Entropy Production. The local bound on relative entropy and an LSI involving S_e allow us to do the replacements *j*_{ℓ,k} ≈ ℑ(*ω*_{ℓ,k}, *η*_{ℓ,k}) : *ℑ* = ρ - u², ℑ = u - uρ and ℑ = C(u, ρ) if j = j^ω, j = j^η and j = j^{ω*}, respectively. The explicit form of the bounds is the same as for V̄' above.
- Our entropy pairs (h, J) satisfy J'(u) = (F'(u) − 2u)h'(u). Since G* is reversible, one critical component of X_ε reds as

$$egin{aligned} X^*_{0,k} &:= \mathcal{L}_0 h(\hat{\omega}_{\ell,k}) + J(\hat{\omega}_{\ell,k+1}) - J(\hat{\omega}_{\ell,k}) \ &pprox (1/\ell) h'(\hat{\omega}_{\ell,k}) \left(ar{\eta}_{\ell,k} - ar{\eta}_{\ell,k+\ell} + F'(ar{\omega}_{\ell,k})(ar{\omega}_{\ell,k+\ell} - ar{\omega}_{\ell,k})
ight) \,, \end{aligned}$$

whence the required $X^*_{0,k} \approx 1/\ell$ would follow by $\bar{\eta}_{\ell,k} \approx F(\bar{\omega}_{\ell,k})$. Since we do not have the appropriate logarithmic Sobolev inequality, another tool must be found.

Relaxation in action

η_k appears with a negative sign in the formula of G^{*}η_k = −j^{ω*}_{k-1} − j^{ω*}_k and ∫ G^{*}η_k dλ_{u,ρ} = −2C(u,ρ), thus we hope to find a relaxation scheme. The approximate identities below reflect the underlying structure:

$$egin{aligned} d ilde{u}_arepsilon + \partial_x (ilde{
ho}_arepsilon - ilde{u}_arepsilon^2) \, dt + eta \, \partial_x C(ilde{u}_arepsilon, ilde{
ho}_arepsilon) \, dt &pprox 0 \,, \ d ilde{
ho}_arepsilon + \partial_x (ilde{u}_arepsilon - ilde{u}_arepsilon ighta) + (2eta / arepsilon) \, C(ilde{u}_arepsilon, ilde{
ho}_arepsilon) \, dt &pprox 0 \,, \end{aligned}$$

where $\tilde{u}_{\varepsilon} \sim \bar{\omega}_{\ell,k}$ and $\tilde{\rho}_{\varepsilon} \sim \bar{\eta}_{\ell,k}$ by mollification.

Relaxation in action

η_k appears with a negative sign in the formula of G^{*}η_k = −j^{ω*}_{k-1} − j^{ω*}_k and ∫ G^{*}η_k dλ_{u,ρ} = −2C(u,ρ), thus we hope to find a relaxation scheme. The approximate identities below reflect the underlying structure:

$$egin{aligned} d ilde{u}_arepsilon + \partial_x (ilde{
ho}_arepsilon - ilde{u}_arepsilon^2) \, dt + eta \, \partial_x C(ilde{u}_arepsilon, ilde{
ho}_arepsilon) \, dt &pprox 0 \, , \ d ilde{
ho}_arepsilon + \partial_x (ilde{u}_arepsilon - ilde{u}_arepsilon ighta) + (2eta/arepsilon) \, C(ilde{u}_arepsilon, ilde{
ho}_arepsilon) \, dt &pprox 0 \, , \end{aligned}$$

where $\tilde{u}_{\varepsilon} \sim \bar{\omega}_{\ell,k}$ and $\tilde{\rho}_{\varepsilon} \sim \bar{\eta}_{\ell,k}$ by mollification.

Since

$$(\rho - F(u))C(u, \rho) \ge \Psi(u, \rho) := (1/2)(\rho - F(u))^2$$
,

even the trivial Liapunov function Ψ can be applied to conclude that $\bar{\eta}_{l,k} \approx F(\bar{\omega}_{l,k})$. This trick works well if $\varepsilon \sigma^2(\varepsilon) \beta^2(\varepsilon) \to +\infty$ as $\varepsilon \to 0$, a slightly better result can be proven by replacing Ψ with a clever Lax entropy.

The End. The Div - Curl lemma is now a consequence of our a priori bounds including η_{ℓ,k} ≈ F(ω_{ℓ,k}). The uniqueness of the hydrodynamic limit follows by the Lax entropy inequality: lim sup X_ε(ψ, h) ≤ 0 for ψ ≥ 0 and convex h. The bound on Z_ε of the decomposition X_ε = Y_ε + Z_ε does never vanish.

The End. The Div - Curl lemma is now a consequence of our a priori bounds including η_{ℓ,k} ≈ F(ω_{ℓ,k}). The uniqueness of the hydrodynamic limit follows by the Lax entropy inequality: lim sup X_ε(ψ, h) ≤ 0 for ψ ≥ 0 and convex h. The bound on Z_ε of the decomposition X_ε = Y_ε + Z_ε does never vanish.

Open problems:

Lax inequality for the anharmonic chain with artificial viscosity. Uniqueness of HDL to the Leroux system, say.

Relaxation of $\varepsilon\sigma^2(\varepsilon) \to +\infty$ by a careful non - gradient analysis.

Derivation of the compressible Euler equations with physical viscosity by adding energy and momentum preserving noise to the equations of the anharmonic chain.

Navier - Stokes correction for creation and annihilation.