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Random Perturbations Compensated Compactness Relaxation of Interacting Exclusions

Historical Notes (Hyperbolic systems)

C.Morrey (1955): Idea of scaling limits for mechanical models.

R.L.Dobrushin + coworkers (1980–85): One-dimensional hard
rods and harmonic oscillators. Continuum of conservation laws.

H.Rost (1981): Asymmetric exclusion → rarefaction waves.

F.Rezakhanlou (1991): Coupling techniques for general attractive
systems in a regime of shock waves. Single conservation laws only.

H.-T. Yau (1991) + Olla - Varadhan - Yau (1993): Preservation
of local equilibrium in a smooth regime via the method of relative
entropy. Hamiltonian dynamics with conservative, diffusive noise.

JF (2001–): Stochastic theory of compensated compactness.
Further results with B. Tóth, Kati Nagy and C. Bahadoran.
Shocks, non - attractive models, couples of conservation laws.
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Models and Methods

I The Anharmonic Chain with Conservative Noise. Physical and
Artificial Viscosity. Ginzburg - Landau perturbation.

I Replacement of Microscopic Currents by their Equilibrium
Estimators via Logarithmic Sobolev Inequalities.

I Imitation of the Vanishing Viscosity Limit: L = L0 + σS .
I Stochastic Theory of Compensated Compactness

I Interacting Exclusions with Creation and Annihilation:
Relaxation Scheme Replaces the missing LSI.
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Hyperbolic Systems of Conservation Laws

I t ≥ 0 , x ∈ R , u = u(t, x) , u,Φ(u) ∈ Rd :

∂tu(t, x) + ∂xΦ(u(t, x)) = 0 ;

Φ′ := ∇Φ has distinct real eigenvalues.

I Lax Entropy Pairs (h, J) :

∂th(u(t, x)) + ∂xJ(u(t, x)) = 0

along classical solutions if J ′ = h′Φ′ .

I Entropy Production:

X (h, u) := ∂th(u) + ∂xJ(u) ≈ 0 ??

beyond shocks in the sense of distributions.
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The Vanishing Viscosity Limit

I Parabolic Approximation:

∂tuσ(t, x) + ∂xΦ(uσ(t, x)) = σ∂2xuσ(t, x) ;

uσ → u as 0 < σ → 0 ??

I A Priori Bound for Entropy Production:

X (h, u) = σ∂x(h′(u) · ∂xu)− σ(∂xu · h′′(u)∂xu)

whence σ1/2∂xu is bounded in L2 if h is convex, but σ → 0 !!

I The bound does not vanish!! WE DO NOT HAVE ANY
STRONG COMPACTNESS ARGUMENT!!
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Compensated Compactness

I Young Measure: dΘ := dt dx θt,x(dy) represents u if θt,x is
the Dirac mass at u(t, x) . Hence uσ is relative compact in a
space of measures.

I F. Murat: Sending σ → 0 , the above decomposition implies

θt,x(h1J2)− θt,x(h2J1) = θt,x(h1)θt,x(J2)− θt,x(h2)θt,x(J1)

for all couples of entropy pairs.

I L. Tartar - R. DiPerna: The limiting θ is Dirac, therefore it
represents a weak solution.
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The Anharmonic Chain
I Configurations: ω = {(pk , rk) : k ∈ Z} , pk , rk ∈ R are the

momentum and the deformation at site k ∈ Z . Dynamics:

ṗk = V ′(rk)− V ′(rk−1) and ṙk = pk+1 − pk ,

V (x) ≈ x2/2 at infinity, sub - exponential growth of pk , rk .
Generator: the Liouville operator L0 , ∂tϕ(ω(t)) = L0ϕ(ω) .
Hyperbolic scaling: πε(t, x) := pk(t/ε) , ρε(t, x) := rk(t/ε) if
|kε− x | < ε/2 , as 0 < ε→ 0 .

I Lattice approximation to ∂tπ = ∂xV
′(ρ) , ∂tρ = ∂tπ ??

I Classical conservation laws: pk , rk and Hk := p2k/2 + V (rk) ;
∂tHk = pk+1V

′(rk)− pkV
′(rk−1) .

Is there any other??
Stationary product measures: λβ,π,γ , pk ∼ N(π, 1/β) ,
Lebesgue density of rk ∼ eγx−βV (x) .
HDL: Compressible Euler equations?
Strong ergodic hypothesis: Description of all stationary states
and conservation laws!!
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ṗk = V ′(rk)− V ′(rk−1) and ṙk = pk+1 − pk ,
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Physical Viscosity

I The anharmonic chain can be regularized by adding stochastic
perturbations to the equations of momenta.
Random exchange of momenta: L = L0 + σSep ,

Sepϕ(ω) =
∑
k∈Z

(ϕ(ωk,k+1)− ϕ(ω)) ,

ω → ωk,k+1 means pk ↔ pk+1 .

I The classical conservation laws are OK, and the strong ergodic
hypothesis (F - Funaki - Lebowitz 1994) implies the triplet of
compressible Euler equations in a smooth regime with periodic
boundary conditions. The asymptotic preservation of local
equilibrium follows by the relative entropy argument.
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I Ginzburg - Landau perturbation. Stochastic dynamics:

dpk = (V ′(rk)− V ′(rk−1)) dt + σ (pk+1 + pk−1 − 2pk) dt

+
√

2σ (dwk − dwk−1) , drk = (pk+1 − pk) dt , k ∈ Z ,

σ > 0 is fixed, {wk : k ∈ Z} are independent Wiener
processes.

I Energy is not conserved, λπ,γ := λ1,π,γ are stationary.
We have convergence to classical solutions of the nonlinear
sound equation of elastodynamics:

∂tπ = ∂xS
′(ρ) and ∂tρ = ∂xπ

as
∫
V ′(rk) dλπ,γ = γ = S ′(ρ) if

∫
rk dλπ,γ = ρ = F ′(γ) ,

S(ρ) := sup
γ
{γρ−F (γ)} , F (γ) := log

∫ ∞
−∞

exp(γx−V (x)) dx .
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Artificial Viscosity

I In a regime of shock waves the randomness must be very
strong:

dpk = (V ′(rk)− V ′(rk−1)) dt + σ(ε) (pk+1 + pk−1 − 2pk) dt

+
√

2σ(ε) (dwk − dwk−1) , k ∈ Z ,
drk = (pk+1 − pk) dt + σ(ε) (V ′(rk+1) + V ′(rk−1)− 2V ′(rk)) dt

+
√

2σ(ε) (dw̃k+1 − dw̃k) , k ∈ Z ,

where {wk} and {w̃k} are independent families of
independent Wiener processes. The macroscopic viscosity:
εσ(ε)→ 0 , but εσ2(ε)→ +∞ as ε→ 0 .

I Conservation laws and stationary states as before: Again the
sound equation is expected as the result of the hyperbolic
scaling limit.
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I Conditions on V . The substitution of the microscopic
currents V ′(rk) by their equilibrium expectation S ′(v) is done
by means of a logarithmic Sobolev inequality, thus V must be
strictly convex.

I The genuine nonlinearity of its flux is a condition for existence
of weak solutions to the sound equation, that is S ′′′(v) = 0
can not have more that one root. In terms of V this follows
from the same property of V ′′′ , but there are other examples,
too. In particular if V is symmetric then V ′ should be strictly
convex or concave on the half - line R+ .

I A technical condition of asymptotic normality is also needed:
V ′′(x) converges at an exponential rate as x → ±∞ .

I Our only hypothesis on the initial distribution is the entropy
bound: S [µ0,ε,n|λ0,0] = O(n) , where µt,ε,n denotes the joint
distribution of the variables {(pk(t), rk(t)) : |k| ≤ n} , and
S [µ|λ] :=

∫
log f dµ , f = dµ/dλ .
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I Main Result. The distributions Pε of the empirical process
(πε, ρε) form a tight family with respect to the weak topology
of the C space of trajectories, and its limit distributions are all
concentrated on a set of weak solutions to the sound
equation.

I The notion of weak convergence above changes from step to
step of the argument. We start with the Young measure of
the block - averaged empirical process (π̂ε, ρ̂ε) , finally we get
tightness in the strong local Lp(R2

+) topology if p < 2 .

I Compensated compactness is the most relevant keyword of
the proofs, results by J. Shearer (1994) and Serre - Shearer
(1994) are applied at the end.

I In the case of systems the uniqueness of the hydrodynamic
limit is still a formidable open problem, we are not able to
prove the desired local bounds for our stochastic models.



Random Perturbations Compensated Compactness Relaxation of Interacting Exclusions

I Main Result. The distributions Pε of the empirical process
(πε, ρε) form a tight family with respect to the weak topology
of the C space of trajectories, and its limit distributions are all
concentrated on a set of weak solutions to the sound
equation.

I The notion of weak convergence above changes from step to
step of the argument. We start with the Young measure of
the block - averaged empirical process (π̂ε, ρ̂ε) , finally we get
tightness in the strong local Lp(R2

+) topology if p < 2 .

I Compensated compactness is the most relevant keyword of
the proofs, results by J. Shearer (1994) and Serre - Shearer
(1994) are applied at the end.

I In the case of systems the uniqueness of the hydrodynamic
limit is still a formidable open problem, we are not able to
prove the desired local bounds for our stochastic models.



Random Perturbations Compensated Compactness Relaxation of Interacting Exclusions

I Main Result. The distributions Pε of the empirical process
(πε, ρε) form a tight family with respect to the weak topology
of the C space of trajectories, and its limit distributions are all
concentrated on a set of weak solutions to the sound
equation.

I The notion of weak convergence above changes from step to
step of the argument. We start with the Young measure of
the block - averaged empirical process (π̂ε, ρ̂ε) , finally we get
tightness in the strong local Lp(R2

+) topology if p < 2 .

I Compensated compactness is the most relevant keyword of
the proofs, results by J. Shearer (1994) and Serre - Shearer
(1994) are applied at the end.

I In the case of systems the uniqueness of the hydrodynamic
limit is still a formidable open problem, we are not able to
prove the desired local bounds for our stochastic models.



Random Perturbations Compensated Compactness Relaxation of Interacting Exclusions

I Main Result. The distributions Pε of the empirical process
(πε, ρε) form a tight family with respect to the weak topology
of the C space of trajectories, and its limit distributions are all
concentrated on a set of weak solutions to the sound
equation.

I The notion of weak convergence above changes from step to
step of the argument. We start with the Young measure of
the block - averaged empirical process (π̂ε, ρ̂ε) , finally we get
tightness in the strong local Lp(R2

+) topology if p < 2 .

I Compensated compactness is the most relevant keyword of
the proofs, results by J. Shearer (1994) and Serre - Shearer
(1994) are applied at the end.

I In the case of systems the uniqueness of the hydrodynamic
limit is still a formidable open problem, we are not able to
prove the desired local bounds for our stochastic models.



Random Perturbations Compensated Compactness Relaxation of Interacting Exclusions

On the ideas of the proof
I The Main Steps. We follow the argumentation of the

vanishing viscosity approach. There is a rich family of Lax
entropy pairs (h, J) , entropy production
Xε := ∂th(π̂ε, ρ̂ε) + ∂xJ(π̂ε, ρ̂ε) is considered as a generalized
function.

I First difficulty: to identify the macroscopic flux J in the
microscopic expression of L0h , and to show that the
remainders do vanish in the limit.

I Replace block averages of the microscopic currents of
momenta with their equilibrium expectations via LSI. It is
based on our a priori bounds on relative entropy and its
Dirichlet form.

I Recover at the microscopic (mesoscopic) level the basic
structure of the vanishing viscosity limit.

I Launch the stochastic theory of compensated compactness.
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The a Priori Bounds
I The Entropy Bound and LSI. The initial condition implies

that

S [µt,ε,n|λ0,0] + σ(ε)

∫ t

0
D[µs,ε,n|λ0,0] ds ≤ C (t + n)

for all t, n, ε with the same constant C ; fn := dµt,ε,n/dλ0,0 ,

D :=
n−1∑
k=−n

∫
(∇1∂k

√
fn)2 dλ+

n−1∑
k=−n

∫
(∇1∂̃k

√
fn)2 dλ ,

∇`ξk := (1/`)(ξk+` − ξk) , ∂k := ∂/∂pk and ∂̃k := ∂/∂rk .

I Since V is convex, the following LSI holds true. Given
r̄`,k = v , let µρ`,k and λρ`,k denote the conditional distributions
of the variables rk , rk−1, ..., rk−`+1 , and set
f v`,k := dµρ`,k/dλ

ρ
`,k , then∫

log f ρ`,k dµ
ρ
`,k ≤ `

2Clsi

k−1∑
j=k−`+1

∫ (
∇1∂̃k(f ρ`,k)1/2

)2
dλρ`,k .
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I Replacement of the microscopic flux. Combining LSI and
the entropy inequality

∫
ϕ dµ ≤ S [µ|λ] + log

∫
eϕ dλ we get

∑
|k|<n

∫ t

0

∫ (
V̄ ′`,k − S ′(r̄`,k)

)2
dµs,ε ds ≤ C1

(
nt

`
+

n`2

σ(ε)

)
,

where ξ̄`,k := (ξk + ξk−1 + · · ·+ ξk−`+1)/` , e.g.
V ′k = V ′(rk) . Similar bounds control the differences
r̄`,k+` − r̄`,k and r̂`,k − r̄`,k .

I Entropy production Xε is written in terms of the ”mollified”
block averages ξ̂`,k , these are defined by means of a triangular
weight function. Mesoscopic blocks of size ` = `(ε) are used:

lim
ε→0

`(ε)

σ(ε)
= 0 and lim

ε→0

ε`3(ε)

σ(ε)
= +∞ .
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Lax Entropy Pairs

I One critical term of Xε can be computed as

X0,k := L0h(p̂`,k , r̂`,k) + J(p̂`,k+1, r̂`,k+1)− J(p̂`,k , r̂`,k)

≈ h′u(p̂`,k , r̂`,k)(V̂ ′`,k − V̂ ′`,k−1) + h′v (p̂`,k , r̂`,k)(p̂`,k+1 − p̂`,k)

+ J ′u(p̂`,k , r̂`,k)(p̂`,k+1 − p̂`,k) + J ′v (p̂`,k , r̂`,k)(r̂`,k+1 − r̂`,k) .

I Since h′π(π, ρ)S ′′(ρ) + J ′ρ(π, ρ) = h′ρ(π, ρ) + J ′π(π, ρ) = 0 ,

X0,k ≈ h′u(π̂`,k , ρ̂l ,k) (V̂ ′`,k − V̂ ′`,k−1 − S ′′(r̂`,k)(r̂`,k+1 − r̂`,k)) .

Observe now that ξ̂`,k+1 − ξ̂`,k = (1/`)(ξ̄`,k+` − ξ̄`,k) , thus
the substitution V̄ ′`,k ≈ S ′(r̄`,k) results in X0,k ≈ 1/` .

In fact (ε`(ε)σ(ε))−1 is the order of the replacement error;
that is why we need?? εσ2(ε)→ +∞ and the sharp explicit
bounds provided by the logarithmic Sobolev inequality.
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Stochastic Compensated Compactness

For Lax entropy pairs (h, J) set

Xε(ψ, h) := −
∫ ∞
0

∫ ∞
−∞

(
h(ûε)ψ

′
t(t, x) + J(ûε)ψ

′
x(t, x)

)
dx dt ,

where uε = (π, ρ) , and the test function ψ is compactly supported
in the interior of R2

+ . Another test function φ localizes X . An
entropy pair (h, J) is well controlled if Xε decomposes as
Xε(ψ, h) = Yε(ψ, h) + Zε(ψ, h) , and we have two random
functionals Aε(φ, h) and Bε(φ, h) such that

|Yε(ψφ, h)| ≤ Aε(φ, h)‖ψ‖+ and |Zε(ψ, h)| ≤ Bε(φ, h)‖ψ‖ :

lim EAε(φ, h) = 0 and lim sup EBε(φ, h) < +∞ as ε→ 0 .
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I The Young family Θ is defined as dΘε := dt dx θε,t,x(du) ,
where θε,t,x is the Dirac mass at the actual value of ûε .

I If (h1, J1) and (h2, J2) are well controlled entropy pairs with
bounded second derivatives then the Div - Curl lemma holds
true:

θt,x(h1J2)− θt,x(h2J1) = θt,x(h1)θt,x(J2)− θt,x(h2)θt,x(J1)

a.s. with respect to any limit distribution of Pε as ε→ 0 .

I Now we are in a position to refer to the papers by J. Shearer
and Serre - Shearer on an Lp theory of compensated
compactness. The Dirac property of the Young measure
follows by means of their moderately increasing entropy
families.
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I If (h1, J1) and (h2, J2) are well controlled entropy pairs with
bounded second derivatives then the Div - Curl lemma holds
true:

θt,x(h1J2)− θt,x(h2J1) = θt,x(h1)θt,x(J2)− θt,x(h2)θt,x(J1)

a.s. with respect to any limit distribution of Pε as ε→ 0 .

I Now we are in a position to refer to the papers by J. Shearer
and Serre - Shearer on an Lp theory of compensated
compactness. The Dirac property of the Young measure
follows by means of their moderately increasing entropy
families.



Random Perturbations Compensated Compactness Relaxation of Interacting Exclusions

Interacting Exclusions, Tóth - Valkó (2002)
I Charged particles: ω = (ωk = 0,±1 : k ∈ Z) , ηk := ω2

k .

L0ϕ(ω) =
1

2

∑
k∈Z

(ηk + ηk+1 +ωk −ωk+1)(ϕ(ωk,k+1)−ϕ(ω)) .

I Conservation laws: L0ωk = jωk−1 − jωk and L0η = jηk−1 − jηk ,
where

jωk : = (1/2) (ηk + ηk+1 − 2ωkωk+1 + ωkηk+1 − ηkωk+1)

+ (1/2)(ηk − ηk+1) ,

jηk : = (1/2) (ωk + ωk+1 − ωkηk+1 − ηkωk+1 + ηk − ηk+1) .

I All Bernoulli measures λu,ρ are stationary:
∫
ωk dλu,ρ = u and∫

ηk dλu,ρ = ρ .∫
jωk dλu,ρ = ρ− u2 and

∫
jηk dλu,ρ = u − uρ .

I The hyperbolic scaling limit for u ∼ ω̄`,k and ρ ∼ η̄`,k yields:

∂tu + ∂x(ρ− u2) = 0 , ∂tρ+ ∂x(u − uρ) = 0 (Leroux)

F - Tóth (2004).



Random Perturbations Compensated Compactness Relaxation of Interacting Exclusions

Interacting Exclusions, Tóth - Valkó (2002)
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Creation and Annihilation
The action ω → ωk+ of creation means that (ωk , ωk+1)→ (1,−1)
if ωk = ωk+1 = 0 , while annihilation ω → ωk− is defined by
(ωk , ωk+1)→ (0, 0) if ωk = 1 and ωk+1 = −1 . The generator of
the composed process reads as L∗ = L0 + β G∗ , where β > 0 and

G∗ϕ(ω) :=
∑
k∈Z

(1− ηk)(1− ηk+1)(ϕ(ωk+)− ϕ(ω))

+
1

4

∑
k∈Z

(ηk + ωk)(ηk+1 − ωk+1)(ϕ(ωk−)− ϕ(ω)) .

Creation - annihilation violates the conservation of particle number.
The product measure λu,ρ will be stationary if
λu,ρ[ωk = 0, ωk+1 = 0] = λu,ρ[ωk = 1, ωk+1 = −1] , whence

ρ = F (u) := (1/3)(4−
√

4− 3u2)

is the criterion of equilibrium because the second root:

F̃ (u) := (1/3)(4 +
√

4− 3u2) ≥ 5/3 > 1 .
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Substitution

I Equilibrium Expectations. λ∗u := λu,F (u) , |u| < 1 is the
family of our stationary product measures:∫
ωk dλ

∗
u = u ,

∫
ηk dλ

∗
u = F (u) and

∫
jωk dλ∗u = F (u)− u2 .

I G∗ωk = jω∗k−1 − jω∗k is also a difference of currents:

jω∗k (ω) := (1/4)(ηk + ωk)(ηk+1 − ωk+1)− (1− ηk)(1− ηk+1) ,

and
∫
jω∗k dλu,ρ = C (u, ρ) := (3/4)(ρ− F (u))(F̃ (u)− ρ) .

I Therefore

∂tu(t, x) + ∂x(F (u)− u2) = 0 (CreAnni)

is the expected result of the hyperbolic scaling limit.

I Simply substitute ρ = F (u) into the first equation of the
Leroux system. Hyperbolic scaling: G∗ has no contribution.
Navier - Stokes correction??
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Main Result

I Since we do not want to postulate the smoothness of the
macroscopic solution, the basic process is regularized by an
overall stirring Se , the full generator reads as
L := L∗ + σ(ε)Se , and the theory of compensated
compactness is applied.

I Assume that the initial distributions satisfy

lim
ε→0

ε
∑
k∈Z

ϕ(εk)ωk(0) =

∫ ∞
−∞

ψ(x)u0(x) dx

in probability for all compactly supported ϕ ∈ C (R) .

I The artificial viscosity σ(ε) and the size ` = `(ε) of the
mesoscopic block averages are the same as before. Our
empirical process is defined as ûε(t, x) := ω̂`,k(t/ε) if
|εk − x | < ε/2 .
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|εk − x | < ε/2 .
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I With C. Bahadoran and K. Nagy (EJP 2011) we prove that

lim
ε→0

E

∫ τ

0

∫ r

−r
|u(t, x)− ûε(t, x)| dx dt = 0

for all r , τ > 0 , where u is the uniquely specified weak entropy
solution to the CreAnni equation with initial value u0 .

I The coefficient β > 0 needs not be a constant, it is sufficient
to assume that εσ2(ε)β−4(ε)→ +∞ and σ(ε)β(ε)→ +∞ as
ε→ 0 .

I The proof follows the standard technology of the stochastic
theory of compensated compactness, the entropy production
for entropy pairs (h, J) of equation CreAnni has to be
evaluated. However, the present logarithmic Sobolev
inequality is not sufficient for the identification of ∂xJ in the
stochastic equation of h .
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Main Steps of the Proof

I Entropy Production. The local bound on relative entropy
and an LSI involving Se allow us to do the replacements
j̄`,k ≈ J(ω̄`,k , η̄`,k) :
J = ρ− u2 , J = u − uρ and J = C (u, ρ)
if j = jω , j = jη and j = jω∗ , respectively.
The explicit form of the bounds is the same as for V̄ ′ above.

I Our entropy pairs (h, J) satisfy J ′(u) = (F ′(u)− 2u)h′(u) .
Since G∗ is reversible, one critical component of Xε reds as

X ∗0,k := L0h(ω̂`,k) + J(ω̂`,k+1)− J(ω̂`,k)

≈ (1/`)h′(ω̂`,k)
(
η̄`,k − η̄`,k+` + F ′(ω̄`,k)(ω̄`,k+` − ω̄`,k)

)
,

whence the required X ∗0,k ≈ 1/` would follow by
η̄`,k ≈ F (ω̄`,k) . Since we do not have the appropriate
logarithmic Sobolev inequality, another tool must be found.
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Relaxation in action

I ηk appears with a negative sign in the formula of
G∗ηk = −jω∗k−1 − jω∗k and

∫
G∗ηk dλu,ρ = −2C (u, ρ) , thus we

hope to find a relaxation scheme. The approximate identities
below reflect the underlying structure:

dũε + ∂x(ρ̃ε − ũ2ε ) dt + β ∂xC (ũε, ρ̃ε) dt ≈ 0 ,

d ρ̃ε + ∂x(ũε − ũερ̃ε) + (2β/ε)C (ũε, ρ̃ε) dt ≈ 0 ,

where ũε ∼ ω̄`,k and ρ̃ε ∼ η̄`,k by mollification.

I Since

(ρ− F (u))C (u, ρ) ≥ Ψ(u, ρ) := (1/2) (ρ− F (u))2 ,

even the trivial Liapunov function Ψ can be applied to
conclude that η̄l ,k ≈ F (ω̄l ,k) . This trick works well if
εσ2(ε)β2(ε)→ +∞ as ε→ 0 , a slightly better result can be
proven by replacing Ψ with a clever Lax entropy.
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I The End. The Div - Curl lemma is now a consequence of our
a priori bounds including η̄`,k ≈ F (ω̄`,k) . The uniqueness of
the hydrodynamic limit follows by the Lax entropy inequality:
lim supXε(ψ, h) ≤ 0 for ψ ≥ 0 and convex h . The bound on
Zε of the decomposition Xε = Yε + Zε does never vanish.

I Open problems:
Lax inequality for the anharmonic chain with artificial viscosity.
Uniqueness of HDL to the Leroux system, say.
Relaxation of εσ2(ε)→ +∞ by a careful non - gradient
analysis.
Derivation of the compressible Euler equations with physical
viscosity by adding energy and momentum preserving noise to
the equations of the anharmonic chain.
Navier - Stokes correction for creation and annihilation.
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