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Plan of the talk

Low temperature 3D Ising model, Wulff shapes and (unknown)
structure of microscopic facets.

Facets on SOS surfaces.

Effective model of microscopic facets.

Results and proofs.
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3D Ising model

∂ΛN

ΛN ⊂ Z
3

|ΛN | = N3

The Gibbs State

−H−
N =

1

2

∑

x∼y

σxσy−
∑

x∈∂ΛN

σx

P
−
N,β(σ) ∼ e

−βH−
N

Low Temperature β ≫ 1 ⇒ m∗(β) > 0.
Phase Segregation: Fix m > −m∗ and consider

P
m,−
N,β (·) = P

−
N,β

(

·
∣

∣

∑

σx = mN3
)

.
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Microscopic Wulff shape

Typical Picture under P
m,−
N,β

ΓN
Volume of the microscopic
Wulff droplet

|ΓN | ≈
m + m∗

2
N3

Theorem (Bodineau, Cerf-Pisztora): As N → ∞ the scaled shape
1
N

ΓN converges to the macroscopic Wulff shape.
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Surface Tension and Macroscopic Wulff Shape

n +

−

M

+

−

n

Kβ

h

τβ(n) = − lim
M→∞

| sin n|

M2
log

Z±
M

Z−
M

.

τβ = max
h∈∂Kβ

h · n

Dilated Wulff Shape

K
m
β =

(

m + m∗

2|Kβ|

)1/3

Kβ
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Bodineau, Cerf-Pisztora Result

N (Km
β

+ u)

ΓN

Nu

Define (on unit box Λ ⊂ R
3)

φN(t) = 1I{Nt∈ΓN} − 1I{Nt 6∈ΓN}.

Define
χm(t) = 1I{t∈Km

β}
− 1I{t 6∈Km

β}

Then, under
{

P
m,−
N,β

}

,

lim
N→∞

min
u

‖φN(·) − χm(u + ·)‖L1(Λ) = 0
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Macroscopic Facets

Kβ

n
Fn τβ - support function of Kβ.

Then

Fn = ∂τβ(n).

Set ei - lattice direction. Dobrushin ’72, Miracle-Sole ’94:

For β ≫ 1 Fei
is a proper 2D facet
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Microscopic Facets

Zooming Bodineau, Cerf-Pisztora picture, what happens?

NFe1

NFe1

NFe1

ΓN

OR

ΓN

OR

ΓN
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SOS Model

N

ΓN

VN

N

Ak
0

k

ℓN

Bodineau, Schonmann,
Shlosman ’05

PN (ΓN = γ) ∼ e
−β|γ|

P
m
N (·) = PN

(

·
∣

∣VN ≥ mN3
)

Result: There exists a(β) ց 0
such that

ℓN = max
{

k : Ak ≥ a(β)N2
}

satisfies AℓN−1 ≥ (1− a(β))N2.
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Effective Model of Microscopic Facets

ΓN

VN

SN

pv

ps

N

Configuration:
(

ΓN , {ξv
i }i∈VN

,
{

ξs
j

}

j∈SN

)

.

Total number of particles:

ΞN =
∑

i∈VN

ξv
i +

∑

j∈SN

ξs
j

|Γ| - area of Γ

Bp(ξ) = pξ(1 − p)1−ξ

β large

Probability Distribution:

PN (Γ, ξv , ξs) ∝ e−β|Γ|
∏

i∈VN

Bpv (ξ
v
i )

∏

j∈SN

Bps (ξ
s
j ).
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Contour Representation of Γ

Orientation of contours:
Positive and negative
(holes)

α(γ) - signed area.

|γ| - length.

Compatibility γ ∼ γ′

For Γ = {γi}

|Γ| ∼
∑

|γi |, α(Γ)
∆
=

∑

α(γi)
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Creation of Facets

δ = 2(ps − pv) > 0

ps

pv

α(ΓN )

ΞN - total number of particles

EN (ΞN) =
ps + pv

2
N3 ∆

= pN3

Consider

P
a
N (·) = PN

(

·
∣

∣ΞN = pN3 + aN2
)

Surface Tension: log P
(

α(ΓN ) = bN2
)

≈ −N.

Bulk Fluctuations: EN

(

ΞN

∣

∣α(ΓN )
)

= pN3 + δN2α(ΓN ).

log PN

(

ΞN = pN3 + aN2
∣

∣α(ΓN) = bN2
)

∼= −
(aN2 − δbN2)2

N3D
.

where D = ps(1 − ps) + pv(1 − pv).
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Reduction to Large Contours

Fix β ≫ 1. Bulk fluctuations simplify analysis of P
a
N . Recall the contour

representation Γ = {γi}.

Lemma 1 (No intermediate contours). ∀a > 0 there exists ǫ = ǫ(a) > 0
such that

P
a
N

(

∃γi :
1

ǫ
log N ≤ |γi | ≤ ǫN

)

= o(1).

Lemma 2 (Irrelevance of small contours)

P
a
N

(

∣

∣

∑

α(γi )1I{|γi |≤ǫ−1 log N} ≫ N
)

= o(1).

Definition: γ is large if |γ| ≥ ǫN.
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Cluster Expansion and Reduced Model

A. Fix a > 0 and forget about intermediate contours 1
ǫ log N ≤ |γ| ≤ ǫN.

B. Expand with respect to small contours |γ| ≤ 1
ǫ log N.

For Γ = {γi} collection of large contours the effective weight is

P̂N(Γ) ∝ exp
{

−β
∑

|γi | −
∑

C6∼Γ Φβ(C)
}

.

The family of clusters C depends on N and a. However the cluster weights
Φβ(C) remain the same. The corrections are negligible: For all β
sufficiently large ∃ ν(β) ր ∞ such that supC6=∅ eν|C||Φβ(C)| ≤ 1.

Reduced Model of Large Contours and Bulk Particles:

P̂N (Γ, ξv , ξs) = P̂N(Γ)
∏

i∈V̂N

Bpv (ξ
v
i )

∏

j∈ŜN

Bps (ξ
s
j )
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Surface Tension and Variational Problem

C

Nx

0 γ

wβ(γ) = e−β|γ|−
P

C6∼γ Φβ(γ)

Gβ(Nx) =
∑

γ:0→Nx

wβ(γ).

τβ(x) = − lim
N→∞

1

N
log Gβ(Nx).

τβ(γ) =

∫

γ
τβ(ns)ds.

Macroscopic Variational Problem

B = [0, 1]2 unit box. γ1, . . . , γn is a nested family of loops inside B:
If for i 6= j either γi ⊆ γj or γj ⊆ γi or γi ∩ γj = ∅.
Recall δ = 2(ps − pv ) and D = pv (1 − pv ) + ps(1 − ps).

(VP)a min
b

{

(a − δb)2

D
+ min

α(γ1)+···+α(γn)=b

∑

τβ(γi)

}

.
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Solutions to (VP)a
All solutions γ̄∗ = (γ∗

1 , . . . , γ∗
n) form regular stacks: γ∗

1 ⊇ γ∗
2 ⊇ · · · ⊇ γ∗

n .

Optimal loops γ∗
i are of two types:

W
r
β T

r
β

r

r

Wulff shape of radius r Wulff TV of radius r

B
B

Radius r ≤ 1
2

is fixed for γ̄∗: Either (a) γ∗
1 = · · · = γ∗

n = T
r
β or

(b) γ∗
1 = · · · = γ∗

n−1 = T
r
β and γ∗

n = W
r
β.
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1st Order Transition in the Variational Problem

Let γ̄∗ = (γ∗
1 , . . . , γ∗

n) be a solution to (VP)a.

Define n = n(a), b = b(a) =
∑

i α(γ∗
i ) and r = r(a). Then:

n

b

r

a0 a4a3a1

a

a

a

1
2

1

2

3

1

2
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1st Order Transition in the Microscopic Model

Theorem. Fix β large. Then there exist 0 < a1 < a2 < a3 < . . . such that
∀a ∈ (an, an+1) typical configurations under P

aN

N ; where aN = ⌊N3a⌋,
contain exactly n large contours, which are close in shape to
Nγ∗

1 , . . . ,Nγ∗
n .

Remark: 1st order transition - spontaneous appearance of a droplet of
linear size N2/3 in the context of the 2D Ising model was originally
established by Biskup, Chayes and Kotecky CMP’03. Because of large
bulk fluctuations in our model, their result is more difficult for n = 1, but
for n = 2, 3, 4, . . . large contours in our model start to interact, and a
refined control is needed for deriving appropriate upper bounds. There are
two levels of difficulty:
(a) Controlling interactions between two large contours.

(b) For β fixed, controlling interactions for arbitrary fixed number of large

contours as N → ∞.
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Interaction Between 2 Contours

C

γ2

γ1

∑

C6∼γ1∪γ2

Φβ(C) =
∑

C6∼γ1

Φβ(C) +
∑

C6∼γ2

Φβ(C) −
∑

C6∼γ1∩γ2

Φβ(C)
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Interaction Between ℓ Contours

γ1

γ2

γ3

γℓ
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Effective Random Walk Representation of Gβ

Portion of a Contour Between x and y

x
y

γ̂1 γ̂2
γ̂m

ξ1 ξ2
ξm

x
y

eτβ(y−x)Gβ(y − x) ∼=
∑

m

∑

γ̂1,...γ̂m

∏

ρβ(γ̂i )

{ρβ(·)} is a probability distribution on the set of irreducible animals.

ξ1 = (T1,X1), ξ2 = (T2,X2), . . . steps of the effective random walk.
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Attraction vrs Repulsion: Two Walks

• S(n) = S(0) +
∑n

1 Xℓ, where Xℓ ∈ Z are i.i.d. with exponential tails.
• S1(·),S2(·) are two independent copies starting at x = (x1, x2) and
ending (time n ) at y = (y1, y2).

• Repulsion: Via event R+
n = {S1(ℓ) ≥ S2(ℓ) ∀ℓ = 0, 1, 2, . . . , n}

• Attraction: Via potential

Φβ,n(S) =

n
∑

ℓ=1

∑

I⊃S(ℓ)

φβ(|I |),

and φβ(m) ≤ e−c(β)m with
c(β) ր ∞.

I

y1

y2

x2

x1

S1

S2

Lemma. For all β large enough

Ex

(

eΦβ,n(S);R+
n ;S(n) = y

)

≤ 1

uniformly in x , y and n ≥ n0.
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Attraction vrs Repulsion: Two Walks

Proof: Z (ℓ) = S1(ℓ) − S2(ℓ). Input (e.g. Allili and Doney ’99;
Campanino, Ioffe and Louidor ’10)

w

n

z

0

Pz (R+
n ;Z (n) = w) .

(1+z)(1+w)
n

Pz (Z (n) = w) .

Expand

e
Pn

ℓ=1

P

I⊃Z(ℓ) φβ(|I |) =
∏

ℓ

∏

I

(

(eφβ(|I |) − 1)1IZ(ℓ)∈I + 1
)

and use resummation
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Attraction vrs Repulsion: m Walks

• Repulsion: R+
n = {S1(ℓ) ≥ S2(ℓ) ≥ · · · ≥ Sm(ℓ) ∀ℓ = 0, 1, 2, . . . , n}

• Attraction: Via potential

Φβ,n(S) =
n

∑

ℓ=1

∑

I⊃S(ℓ)

φβ(|I |)N(I ,S (ℓ))

where, for an interval I and a
tuple x

N(I , x) = max {0, |I ∩ x | − 1}.

S1

S2x2

x1

x3

ym

y3

y1

y2

xm

Sm

Lemma. For all β large enough

log Ex

(

eΦβ,n(S);R+
n ;S(n) = y

)

. m

uniformly in m, x , y and n ≥ n0.
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Attraction vrs Repulsion: m Walks

Remark: The case of SRW walks and one-point attractive potentials (only
intersections are rewarded) was studied by Tanemura and Yoshida ’03.

Proof in the General Case: For z = (z1, z2, . . . , zm) ordered tuple and an
interval I ,

N(z , I ) =
∑m

1 1I{(zk ,zk+1)∈I} =
∑

1I{(z2k−1,z2k)∈I} +
∑

1I{(z2k ,z2k+1)∈I}

On the other hand,

R+
n ⊂

{

⋂

k

(S2k−1(·) ≤ S2k(·))

}

∩

{

⋂

k

(S2k(·) ≤ S2k+1(·))

}

∆
= Ro,+

n ∩Re,+
n

Use Cauchy-Swarz to decouple between even and odd constraints and
then m − 1 times the upper bound for two walks.
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Happy Birthday

Funaki-san !!!
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Appendix: Fluctuations of (monolayer) boundaries

ΓN VN

N

Nα

• Bulk fluctuation price for VN is ∼ VNN2

N3 ∼ VN

N
.

• Repulsion price for staying Nα away from the boundary is N1−2α.

Therefore N1−2α ∼ VN

N
∼ N1+α

N
= Nα gives α = 1/3.
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