Formation of facets in an equilibrium model of surface growth

Dima loffe¹

Technion

December 2011

¹Based on joint works with Senya Shlosman

Dima loffe (Technion)

Microscopic facets

December 2011 1 / 27

Plan of the talk

- Low temperature 3D Ising model, Wulff shapes and (unknown) structure of microscopic facets.
- Facets on SOS surfaces.
- Effective model of microscopic facets.
- Results and proofs.

3D Ising model

Phase Segregation: Fix $m > -m^*$ and consider

$$\mathbb{P}_{N,\beta}^{m,-}(\cdot) = \mathbb{P}_{N,\beta}^{-}\left(\cdot \mid \sum \sigma_{x} = mN^{3}\right).$$

Microscopic Wulff shape

Typical Picture under $\mathbb{P}_{N,\beta}^{m,-}$

Volume of the microscopic Wulff droplet

$$|\Gamma_N|\approx \frac{m+m^*}{2}N^3$$

Theorem (Bodineau, Cerf-Pisztora): As $N \to \infty$ the scaled shape $\frac{1}{N}\Gamma_N$ converges to the *macroscopic* Wulff shape.

Surface Tension and Macroscopic Wulff Shape

$$au_{eta}(n) = -\lim_{M o \infty} rac{|\sin n|}{M^2} \log rac{Z_M^{\pm}}{Z_M^{-}}.$$

$$au_eta = \max_{h\in\partial \mathbf{K}_eta} h\cdot n$$

Dilated Wulff Shape

$$\mathbf{K}_{eta}^{m}=\left(rac{m+m^{*}}{2|\mathbf{K}_{eta}|}
ight)^{1/3}\mathbf{K}_{eta}$$

h \mathbf{K}_{β}

Bodineau, Cerf-Pisztora Result

Define (on unit box $\Lambda \subset \mathbb{R}^3$) $\phi_N(t) = \mathbb{1}_{\{Nt \in \Gamma_N\}} - \mathbb{1}_{\{Nt \notin \Gamma_N\}}.$ Define $\chi^m(t) = \mathbb{1}_{\{t \in \mathbf{K}^m_\beta\}} - \mathbb{1}_{\{t \notin \mathbf{K}^m_\beta\}}$

Then, under $\left\{\mathbb{P}_{N,\beta}^{m,-}
ight\}$,

$$\lim_{N\to\infty}\min_{u}\|\phi_{N}(\cdot)-\chi^{m}(u+\cdot)\|_{\mathbb{L}_{1}(\Lambda)}=0$$

Macroscopic Facets

Set e_i - lattice direction. Dobrushin '72, Miracle-Sole '94:

For $\beta \gg 1 \ F_{e_i}$ is a proper 2D facet

Microscopic Facets

Zooming Bodineau, Cerf-Pisztora picture, what happens?

SOS Model

Bodineau, Schonmann, Shlosman '05

$$\mathbb{P}_{N}\left(\Gamma_{N}=\gamma\right) \sim \mathrm{e}^{-\beta|\gamma|} \\ \mathbb{P}_{N}^{m}\left(\cdot\right) = \mathbb{P}_{N}\left(\cdot\left|V_{N} \geq mN^{3}\right)\right.$$

Result: There exists $a(\beta) \searrow 0$ such that

 $\ell_N = \max\left\{k: A_k \ge a(eta)N^2
ight\}$ satisfies $A_{\ell_N-1} \ge (1-a(eta))N^2.$

Effective Model of Microscopic Facets

Probability Distribution:

Configuration:

$$\left(\Gamma_N, \{\xi_i^v\}_{i \in V_N}, \{\xi_j^s\}_{j \in S_N} \right).$$
Total number of particles:

$$\Xi_N = \sum \xi_i^v + \sum \xi_i^s$$

•
$$|\Gamma|$$
 - area of Γ
• $\mathbb{B}_p(\xi) = p^{\xi}(1-p)^{1-\xi}$

 $i \in V_N$

 $j \in S_N$

• β large

$$\mathbb{P}_{N}\left(\Gamma,\xi^{\nu},\xi^{s}\right) \propto \mathrm{e}^{-\beta|\Gamma|} \prod_{i \in V_{N}} \mathbb{B}_{\rho_{\nu}}(\xi^{\nu}_{i}) \prod_{j \in S_{N}} \mathbb{B}_{\rho_{s}}(\xi^{s}_{j}).$$

Dima loffe (Technion)

Contour Representation of Γ

- Orientation of contours: Positive and negative (holes)
- $\alpha(\gamma)$ signed area.
- $|\gamma|$ length.
- Compatibility $\gamma \sim \gamma'$

For
$$\Gamma = \{\gamma_i\}$$

 $|\Gamma| \sim \sum |\gamma_i|, \ \alpha(\Gamma) \triangleq \sum \alpha(\gamma_i)$

Creation of Facets

 Ξ_N - total number of particles $\mathbb{E}_N (\Xi_N) = \frac{p^s + p^v}{2} N^3 \triangleq p N^3$ Consider

$$\mathbb{P}_{N}^{a}\left(\cdot\right)=\mathbb{P}_{N}\left(\cdot\left|\Xi_{N}=pN^{3}+aN^{2}\right)\right)$$

Surface Tension: $\log \mathbb{P} \left(\alpha(\Gamma_N) = bN^2 \right) \approx -N.$ Bulk Fluctuations: $\mathbb{E}_N \left(\Xi_N | \alpha(\Gamma_N) \right) = pN^3 + \delta N^2 \alpha(\Gamma_N).$

$$\log \mathbb{P}_N\left(\Xi_N = pN^3 + aN^2 \middle| \alpha(\Gamma_N) = bN^2\right) \cong -\frac{(aN^2 - \delta bN^2)^2}{N^3 D}.$$

where $D = p^{s}(1 - p^{s}) + p^{v}(1 - p^{v})$.

Fix $\beta \gg 1$. Bulk fluctuations simplify analysis of \mathbb{P}_N^a . Recall the contour representation $\Gamma = \{\gamma_i\}$.

Lemma 1 (No intermediate contours). $\forall a > 0$ there exists $\epsilon = \epsilon(a) > 0$ such that

$$\mathbb{P}_{N}^{a}\left(\exists \gamma_{i}:rac{1}{\epsilon}\log N\leq |\gamma_{i}|\leq \epsilon N
ight)=o(1).$$

Lemma 2 (Irrelevance of small contours)

$$\mathbb{P}_{N}^{a}\left(\big|\sum \alpha(\gamma_{i})\mathbb{1}_{\{|\gamma_{i}|\leq\epsilon^{-1}\log N\}}\gg N\right)=o(1).$$

Definition: γ is large if $|\gamma| \ge \epsilon N$.

Cluster Expansion and Reduced Model

A. Fix a > 0 and forget about intermediate contours $\frac{1}{\epsilon} \log N \le |\gamma| \le \epsilon N$. B. Expand with respect to small contours $|\gamma| \le \frac{1}{\epsilon} \log N$.

For $\Gamma = \{\gamma_i\}$ collection of large contours the effective weight is $\hat{\mathbb{P}}_N(\Gamma) \propto \exp\left\{-\beta \sum |\gamma_i| - \sum_{\mathcal{C} \not\sim \Gamma} \Phi_\beta(\mathcal{C})\right\}.$ The family of clusters \mathcal{C} depends on N and a. However the cluster weights

 $\Phi_{\beta}(\mathcal{C})$ remain the same. The corrections are negligible: For all β sufficiently large $\exists \nu(\beta) \nearrow \infty$ such that $\sup_{\mathcal{C} \neq \emptyset} e^{\nu|\mathcal{C}|} |\Phi_{\beta}(\mathcal{C})| \leq 1$.

Reduced Model of Large Contours and Bulk Particles:

$$\hat{\mathbb{P}}_{N}\left(\Gamma,\xi^{\nu},\xi^{s}\right) = \hat{\mathbb{P}}_{N}(\Gamma)\prod_{i\in\hat{V}_{N}}\mathbb{B}_{\rho_{\nu}}(\xi^{\nu}_{i})\prod_{j\in\hat{S}_{N}}\mathbb{B}_{\rho_{s}}(\xi^{s}_{j})$$

Surface Tension and Variational Problem

Macroscopic Variational Problem

 $\mathbb{B} = [0, 1]^2 \text{ unit box. } \gamma_1, \dots, \gamma_n \text{ is a nested family of loops inside } \mathbb{B}:$ If for $i \neq j$ either $\gamma_i \subseteq \gamma_j$ or $\gamma_j \subseteq \gamma_i$ or $\gamma_i \cap \gamma_j = \emptyset$. Recall $\delta = 2(p^s - p^v)$ and $D = p^v(1 - p^v) + p^s(1 - p^s)$.

$$(\mathsf{VP})_{a} \qquad \qquad \min_{b} \left\{ \frac{(a-\delta b)^{2}}{D} + \min_{\alpha(\gamma_{1})+\dots+\alpha(\gamma_{n})=b} \sum \tau_{\beta}(\gamma_{i}) \right\}.$$

Solutions to $(VP)_a$

All solutions $\bar{\gamma}^* = (\gamma_1^*, \dots, \gamma_n^*)$ form regular stacks: $\gamma_1^* \supseteq \gamma_2^* \supseteq \dots \supseteq \gamma_n^*$. Optimal loops γ_i^* are of two types:

Radius
$$r \leq \frac{1}{2}$$
 is fixed for $\bar{\gamma}^*$: Either (a) $\gamma_1^* = \cdots = \gamma_n^* = \mathbf{T}_{\beta}^r$ or
(b) $\gamma_1^* = \cdots = \gamma_{n-1}^* = \mathbf{T}_{\beta}^r$ and $\gamma_n^* = \mathbf{W}_{\beta}^r$.

Dima loffe (Technion)

Microscopic facets

1st Order Transition in the Variational Problem

1st Order Transition in the Microscopic Model

Theorem. Fix β large. Then there exist $0 < a_1 < a_2 < a_3 < \ldots$ such that $\forall a \in (a_n, a_{n+1})$ typical configurations under $\mathbb{P}_N^{a_N}$; where $a_N = \lfloor N^3 a \rfloor$, contain exactly *n* large contours, which are close in shape to $N\gamma_1^*, \ldots, N\gamma_n^*$.

Remark: 1st order transition - spontaneous appearance of a droplet of linear size $N^{2/3}$ in the context of the 2D Ising model was originally established by Biskup, Chayes and Kotecky CMP'03. Because of large bulk fluctuations in our model, their result is more difficult for n = 1, but for n = 2, 3, 4, ... large contours in our model start to interact, and a refined control is needed for deriving appropriate upper bounds. There are two levels of difficulty:

(a) Controlling interactions between two large contours.

(b) For β fixed, controlling interactions for arbitrary fixed number of large contours as $N \to \infty$.

Interaction Between 2 Contours

Interaction Between ℓ Contours

Effective Random Walk Representation of G_{β}

Portion of a Contour Between x and y

 $\mathrm{e}^{\tau_{\beta}(y-x)}G_{\beta}(y-x)\cong\sum_{m}\sum_{\hat{\gamma}_{1},\ldots\hat{\gamma}_{m}}\prod\rho_{\beta}(\hat{\gamma}_{i})$

• $\{\rho_{\beta}(\cdot)\}\$ is a probability distribution on the set of irreducible animals.

• $\xi_1 = (T_1, X_1), \xi_2 = (T_2, X_2), \dots$ steps of the effective random walk.

Attraction vrs Repulsion: Two Walks

- $S(n) = S(0) + \sum_{1}^{n} X_{\ell}$, where $X_{\ell} \in \mathbb{Z}$ are i.i.d. with exponential tails. • $S_1(\cdot), S_2(\cdot)$ are two independent copies starting at $\underline{x} = (x_1, x_2)$ and ending (time n) at $\underline{y} = (y_1, y_2)$.
- Repulsion: Via event $\mathcal{R}_n^+ = \{S_1(\ell) \geq S_2(\ell) \ \forall \ell = 0, 1, 2, \dots, n\}$
- Attraction: Via potential

Lemma. For all β large enough $\mathbb{E}_{\underline{x}}\left(e^{\Phi_{\beta,n}(\underline{S})}; \mathcal{R}_{n}^{+}; \underline{S}(n) = \underline{y}\right) \leq 1$ uniformly in \underline{x}, y and $n \geq n_{0}$.

Attraction vrs Repulsion: Two Walks

Proof: $Z(\ell) = S_1(\ell) - S_2(\ell)$. Input (e.g. Allili and Doney '99; Campanino, loffe and Louidor '10)

and use resummation

Dima loffe (Technion)

Attraction vrs Repulsion: *m* Walks

• Repulsion: $\mathcal{R}_n^+ = \{S_1(\ell) \ge S_2(\ell) \ge \cdots \ge S_m(\ell) \ \forall \ell = 0, 1, 2, \dots, n\}$

Lemma. For all β large enough $\log \mathbb{E}_{\underline{x}} \left(e^{\Phi_{\beta,n}(\underline{S})}; \mathcal{R}_n^+; \underline{S}(n) = \underline{y} \right) \lesssim m$ uniformly in $\underline{m}, \underline{x}, \underline{y}$ and $n \ge n_0$. Remark: The case of SRW walks and one-point attractive potentials (only intersections are rewarded) was studied by Tanemura and Yoshida '03.

Proof in the General Case: For $\underline{z} = (z_1, z_2, \dots, z_m)$ ordered tuple and an interval *I*,

$$N(\underline{z}, I) = \sum_{1}^{m} \mathbb{1}_{\{(z_{k}, z_{k+1}) \in I\}} = \sum \mathbb{1}_{\{(z_{2k-1}, z_{2k}) \in I\}} + \sum \mathbb{1}_{\{(z_{2k}, z_{2k+1}) \in I\}}$$

On the other hand,

$$\mathcal{R}_n^+ \subset \left\{ \bigcap_k \left(S_{2k-1}(\cdot) \leq S_{2k}(\cdot) \right) \right\} \cap \left\{ \bigcap_k \left(S_{2k}(\cdot) \leq S_{2k+1}(\cdot) \right) \right\} \stackrel{\Delta}{=} \mathcal{R}_n^{\mathsf{o},+} \cap \mathcal{R}_n^{\mathsf{e},+}$$

Use Cauchy-Swarz to decouple between even and odd constraints and then m-1 times the upper bound for two walks.

Happy Birthday Funaki-san !!!

Dima loffe (Technion)

3

Appendix: Fluctuations of (monolayer) boundaries

- Bulk fluctuation price for V_N is $\sim \frac{V_N N^2}{N^3} \sim \frac{V_N}{N}$.
- Repulsion price for staying N^{α} away from the boundary is $N^{1-2\alpha}$. Therefore $N^{1-2\alpha} \sim \frac{V_N}{N} \sim \frac{N^{1+\alpha}}{N} = N^{\alpha}$ gives $\alpha = 1/3$.