Formation of facets in an equilibrium model of surface growth

Dima loffe ${ }^{1}$

Technion

December 2011
${ }^{1}$ Based on joint works with Senya Shlosman

Plan of the talk

- Low temperature 3D Ising model, Wulff shapes and (unknown) structure of microscopic facets.
- Facets on SOS surfaces.
- Effective model of microscopic facets.
- Results and proofs.

3D Ising model

The Gibbs State

$$
\begin{aligned}
& -\mathcal{H}_{N}^{-}=\frac{1}{2} \sum_{x \sim y} \sigma_{x} \sigma_{y}-\sum_{x \in \partial \Lambda_{N}} \sigma_{x} \\
& \mathbb{P}_{N, \beta}^{-}(\sigma) \sim \mathrm{e}^{-\beta \mathcal{H}_{N}^{-}}
\end{aligned}
$$

Low Temperature $\beta \gg 1 \Rightarrow m^{*}(\beta)>0$.
Phase Segregation: Fix $m>-m^{*}$ and consider

$$
\mathbb{P}_{N, \beta}^{m,-}(\cdot)=\mathbb{P}_{N, \beta}^{-}\left(\cdot \mid \sum \sigma_{x}=m N^{3}\right)
$$

Microscopic Wulff shape

Typical Picture under $\mathbb{P}_{N, \beta}^{m,-}$

Volume of the microscopic Wulff droplet

$$
\left|\Gamma_{N}\right| \approx \frac{m+m^{*}}{2} N^{3}
$$

Theorem (Bodineau, Cerf-Pisztora): As $N \rightarrow \infty$ the scaled shape $\frac{1}{N} \Gamma_{N}$ converges to the macroscopic Wulff shape.

Surface Tension and Macroscopic Wulff Shape

$$
\begin{gathered}
\tau_{\beta}(n)=-\lim _{M \rightarrow \infty} \frac{|\sin n|}{M^{2}} \log \frac{Z_{M}^{ \pm}}{Z_{M}^{-}} \\
\tau_{\beta}=\max _{h \in \partial \mathbf{K}_{\beta}} h \cdot n
\end{gathered}
$$

Dilated Wulff Shape

$$
\mathbf{K}_{\beta}^{m}=\left(\frac{m+m^{*}}{2\left|\mathbf{K}_{\beta}\right|}\right)^{1 / 3} \mathbf{K}_{\beta}
$$

Bodineau, Cerf-Pisztora Result

Define (on unit box $\Lambda \subset \mathbb{R}^{3}$)

$$
\phi_{N}(t)=\mathbb{1}_{\left\{N_{t} \in \Gamma_{N}\right\}}-\mathbb{1}_{\left\{N_{t \not t} \not \Gamma_{N}\right\}} .
$$

Define

$$
\chi^{m}(t)=\mathbb{1}_{\left\{t \in \mathbf{K}_{\beta}^{m}\right\}}-\mathbb{I}_{\left\{t \notin \mathbf{K}_{\beta}^{m}\right\}}
$$

Then, under $\left\{\mathbb{P}_{N, \beta}^{m,-}\right\}$,

$$
\lim _{N \rightarrow \infty} \min _{u}\left\|\phi_{N}(\cdot)-\chi^{m}(u+\cdot)\right\|_{\mathbb{L}_{1}(\Lambda)}=0
$$

Macroscopic Facets

τ_{β} - support function of \mathbf{K}_{β}.
Then

$$
F_{n}=\partial \tau_{\beta}(n)
$$

Set e_{i} - lattice direction. Dobrushin '72, Miracle-Sole '94:
For $\beta \gg 1 F_{\mathrm{e}_{\mathrm{i}}}$ is a proper 2D facet

Microscopic Facets

Zooming Bodineau, Cerf-Pisztora picture, what happens?

OR

OR

SOS Model

Bodineau, Schonmann, Shlosman '05

$$
\begin{aligned}
& \mathbb{P}_{N}\left(\Gamma_{N}=\gamma\right) \sim \mathrm{e}^{-\beta|\gamma|} \\
& \mathbb{P}_{N}^{m}(\cdot)=\mathbb{P}_{N}\left(\cdot \mid V_{N} \geq m N^{3}\right)
\end{aligned}
$$

Result: There exists $a(\beta) \searrow 0$ such that

$$
\ell_{N}=\max \left\{k: A_{k} \geq a(\beta) N^{2}\right\}
$$

satisfies $A_{\ell_{N}-1} \geq(1-a(\beta)) N^{2}$.

Effective Model of Microscopic Facets

Configuration:
$\left(\Gamma_{N},\left\{\xi_{i}^{v}\right\}_{i \in V_{N}},\left\{\xi_{j}^{s}\right\}_{j \in S_{N}}\right)$.
Total number of particles:

$$
\Xi_{N}=\sum_{i \in V_{N}} \xi_{i}^{v}+\sum_{j \in S_{N}} \xi_{j}^{s}
$$

- $|\Gamma|$ - area of Γ
- $\mathbb{B}_{p}(\xi)=p^{\xi}(1-p)^{1-\xi}$
- β large

Probability Distribution:

$$
\mathbb{P}_{N}\left(\Gamma, \xi^{v}, \xi^{s}\right) \propto \mathrm{e}^{-\beta|\Gamma|} \prod_{i \in V_{N}} \mathbb{B}_{p_{v}}\left(\xi_{i}^{v}\right) \prod_{j \in S_{N}} \mathbb{B}_{p_{s}}\left(\xi_{j}^{s}\right)
$$

Contour Representation of Г

- Orientation of contours:

Positive and negative (holes)

- $\alpha(\gamma)$ - signed area.
- $|\gamma|$ - length.
- Compatibility $\gamma \sim \gamma^{\prime}$

$$
\begin{aligned}
& \text { For } \Gamma=\left\{\gamma_{i}\right\} \\
& |\Gamma| \sim \sum\left|\gamma_{i}\right|, \alpha(\Gamma) \triangleq \sum \alpha\left(\gamma_{i}\right)
\end{aligned}
$$

Creation of Facets

$$
\delta=2\left(p^{s}-p^{v}\right)>0
$$

$\bar{\Xi}_{N}$ - total number of particles

$$
\mathbb{E}_{N}\left(\Xi_{N}\right)=\frac{p^{s}+p^{v}}{2} N^{3} \triangleq p N^{3}
$$

Consider

$$
\mathbb{P}_{N}^{a}(\cdot)=\mathbb{P}_{N}\left(\cdot \mid \Xi_{N}=p N^{3}+a N^{2}\right)
$$

Surface Tension: $\log \mathbb{P}\left(\alpha\left(\Gamma_{N}\right)=b N^{2}\right) \approx-N$.
Bulk Fluctuations: $\mathbb{E}_{N}\left(\Xi_{N} \mid \alpha\left(\Gamma_{N}\right)\right)=p N^{3}+\delta N^{2} \alpha\left(\Gamma_{N}\right)$.

$$
\log \mathbb{P}_{N}\left(\Xi_{N}=p N^{3}+a N^{2} \mid \alpha\left(\Gamma_{N}\right)=b N^{2}\right) \cong-\frac{\left(a N^{2}-\delta b N^{2}\right)^{2}}{N^{3} D}
$$

where $D=p^{s}\left(1-p^{s}\right)+p^{v}\left(1-p^{v}\right)$.

Reduction to Large Contours

Fix $\beta \gg 1$. Bulk fluctuations simplify analysis of \mathbb{P}_{N}^{a}. Recall the contour representation $\Gamma=\left\{\gamma_{i}\right\}$.

Lemma 1 (No intermediate contours). $\forall a>0$ there exists $\epsilon=\epsilon(a)>0$ such that

$$
\mathbb{P}_{N}^{a}\left(\exists \gamma_{i}: \frac{1}{\epsilon} \log N \leq\left|\gamma_{i}\right| \leq \epsilon N\right)=o(1) .
$$

Lemma 2 (Irrelevance of small contours)

$$
\mathbb{P}_{N}^{a}\left(\mid \sum \alpha\left(\gamma_{i}\right) \mathbb{I}_{\left\{\left|\gamma_{i}\right| \leq \epsilon^{-1} \log N\right\}} \gg N\right)=o(1) .
$$

Definition: γ is large if $|\gamma| \geq \epsilon N$.

Cluster Expansion and Reduced Model

A. Fix $a>0$ and forget about intermediate contours $\frac{1}{\epsilon} \log N \leq|\gamma| \leq \epsilon N$.
B. Expand with respect to small contours $|\gamma| \leq \frac{1}{\epsilon} \log N$.

For $\Gamma=\left\{\gamma_{i}\right\}$ collection of large contours the effective weight is

$$
\hat{\mathbb{P}}_{N}(\Gamma) \propto \exp \left\{-\beta \sum\left|\gamma_{i}\right|-\sum_{\mathcal{C} \nsim \Gamma} \Phi_{\beta}(\mathcal{C})\right\}
$$

The family of clusters \mathcal{C} depends on N and a. However the cluster weights $\Phi_{\beta}(\mathcal{C})$ remain the same. The corrections are negligible: For all β sufficiently large $\exists \nu(\beta) \nearrow \infty$ such that $\sup _{\mathcal{C} \neq \emptyset} \mathrm{e}^{\nu|\mathcal{C}|}\left|\Phi_{\beta}(\mathcal{C})\right| \leq 1$.

Reduced Model of Large Contours and Bulk Particles:

$$
\hat{\mathbb{P}}_{N}\left(\Gamma, \xi^{v}, \xi^{s}\right)=\hat{\mathbb{P}}_{N}(\Gamma) \prod_{i \in \hat{V}_{N}} \mathbb{B}_{p_{v}}\left(\xi_{i}^{v}\right) \prod_{j \in \hat{S}_{N}} \mathbb{B}_{p_{s}}\left(\xi_{j}^{s}\right)
$$

Surface Tension and Variational Problem

$$
w_{\beta}(\gamma)=\mathrm{e}^{-\beta|\gamma|-\sum_{\mathcal{C} \nsim \gamma} \Phi_{\beta}(\gamma)}
$$

$$
\begin{aligned}
& G_{\beta}(N x)=\sum_{\gamma: 0 \rightarrow N x} w_{\beta}(\gamma) \\
& \tau_{\beta}(x)=-\lim _{N \rightarrow \infty} \frac{1}{N} \log G_{\beta}(N x) . \\
& \tau_{\beta}(\gamma)=\int_{\gamma} \tau_{\beta}\left(n_{s}\right) \mathrm{d} s
\end{aligned}
$$

Macroscopic Variational Problem

$\mathbb{B}=[0,1]^{2}$ unit box. $\gamma_{1}, \ldots, \gamma_{n}$ is a nested family of loops inside $\mathbb{B}:$
If for $i \neq j$ either $\gamma_{i} \subseteq \gamma_{j}$ or $\gamma_{j} \subseteq \gamma_{i}$ or $\gamma_{i} \cap \gamma_{j}=\emptyset$.
Recall $\delta=2\left(p^{s}-p^{\vee}\right)$ and $D=p^{\vee}\left(1-p^{\vee}\right)+p^{s}\left(1-p^{s}\right)$.

$$
(\mathrm{VP})_{a} \quad \min _{b}\left\{\frac{(a-\delta b)^{2}}{D}+\min _{\alpha\left(\gamma_{1}\right)+\cdots+\alpha\left(\gamma_{n}\right)=b} \sum \tau_{\beta}\left(\gamma_{i}\right)\right\} .
$$

Solutions to $(\mathrm{VP})_{a}$

All solutions $\bar{\gamma}^{*}=\left(\gamma_{1}^{*}, \ldots, \gamma_{n}^{*}\right)$ form regular stacks: $\gamma_{1}^{*} \supseteq \gamma_{2}^{*} \supseteq \cdots \supseteq \gamma_{n}^{*}$. Optimal loops γ_{i}^{*} are of two types:

Wulff shape of radius r

Wulff TV of radius r

Radius $r \leq \frac{1}{2}$ is fixed for $\bar{\gamma}^{*}$: Either (a) $\gamma_{1}^{*}=\cdots=\gamma_{n}^{*}=\mathbf{T}_{\beta}^{r}$ or (b) $\gamma_{1}^{*}=\cdots=\gamma_{n-1}^{*}=\mathbf{T}_{\beta}^{r}$ and $\gamma_{n}^{*}=\mathbf{W}_{\beta}^{r}$.

1st Order Transition in the Variational Problem

Let $\bar{\gamma}^{*}=\left(\gamma_{1}^{*}, \ldots, \gamma_{n}^{*}\right)$ be a solution to (VP) ${ }_{a}$.
Define $n=n(a), b=b(a)=\sum_{i} \alpha\left(\gamma_{i}^{*}\right)$ and $r=r(a)$. Then:

1st Order Transition in the Microscopic Model

Theorem. Fix β large. Then there exist $0<a_{1}<a_{2}<a_{3}<\ldots$ such that $\forall a \in\left(a_{n}, a_{n+1}\right)$ typical configurations under $\mathbb{P}_{N}^{a_{N}} ;$ where $a_{N}=\left\lfloor N^{3} a\right\rfloor$, contain exactly n large contours, which are close in shape to $N \gamma_{1}^{*}, \ldots, N \gamma_{n}^{*}$.

Remark: 1st order transition - spontaneous appearance of a droplet of linear size $N^{2 / 3}$ in the context of the 2D Ising model was originally established by Biskup, Chayes and Kotecky CMP'03. Because of large bulk fluctuations in our model, their result is more difficult for $n=1$, but for $n=2,3,4, \ldots$ large contours in our model start to interact, and a refined control is needed for deriving appropriate upper bounds. There are two levels of difficulty:
(a) Controlling interactions between two large contours.
(b) For β fixed, controlling interactions for arbitrary fixed number of large contours as $N \rightarrow \infty$.

Interaction Between 2 Contours

Interaction Between ℓ Contours

Effective Random Walk Representation of G_{β}

Portion of a Contour Between x and y

- $\left\{\rho_{\beta}(\cdot)\right\}$ is a probability distribution on the set of irreducible animals.
- $\xi_{1}=\left(T_{1}, X_{1}\right), \xi_{2}=\left(T_{2}, X_{2}\right), \ldots$ steps of the effective random walk.

Attraction vrs Repulsion: Two Walks

- $S(n)=S(0)+\sum_{1}^{n} X_{\ell}$, where $X_{\ell} \in \mathbb{Z}$ are i.i.d. with exponential tails.
- $S_{1}(\cdot), S_{2}(\cdot)$ are two independent copies starting at $\underline{x}=\left(x_{1}, x_{2}\right)$ and ending (time n) at $\underline{y}=\left(y_{1}, y_{2}\right)$.
- Repulsion: Via event $\mathcal{R}_{n}^{+}=\left\{S_{1}(\ell) \geq S_{2}(\ell) \forall \ell=0,1,2, \ldots, n\right\}$
- Attraction: Via potential

$$
\Phi_{\beta, n}(\underline{S})=\sum_{\ell=1}^{n} \sum_{I \supset \underline{S}(\ell)} \phi_{\beta}(| | \mid),
$$

and $\phi_{\beta}(m) \leq \mathrm{e}^{-c(\beta) m}$ with $c(\beta) \nearrow \infty$.

Lemma. For all β large enough

$$
\mathbb{E}_{\underline{x}}\left(\mathrm{e}^{\Phi_{\beta, n}(\underline{S})} ; \mathcal{R}_{n}^{+} ; \underline{S}(n)=\underline{y}\right) \leq 1
$$

uniformly in $\underline{x}, \underline{y}$ and $n \geq n_{0}$.

Attraction vrs Repulsion: Two Walks

Proof: $Z(\ell)=S_{1}(\ell)-S_{2}(\ell)$. Input (e.g. Allili and Doney '99; Campanino, loffe and Louidor '10)

$$
\mathbb{P}_{z}\left(\mathcal{R}_{n}^{+} ; Z(n)=w\right) \lesssim \frac{(1+z)(1+w)}{n} \mathbb{P}_{z}(Z(n)=w) .
$$

Expand

$$
\mathrm{e}^{\sum_{\ell=1}^{n} \sum_{I \supset Z(\ell)} \phi_{\beta}(| | \mid)}=\prod_{\ell} \prod_{I}\left(\left(\mathrm{e}^{\phi_{\beta}(| | \mid)}-1\right) \mathbb{I}_{Z(\ell) \in I}+1\right)
$$

and use resummation

Attraction vrs Repulsion: m Walks

- Repulsion: $\mathcal{R}_{n}^{+}=\left\{S_{1}(\ell) \geq S_{2}(\ell) \geq \cdots \geq S_{m}(\ell) \forall \ell=0,1,2, \ldots, n\right\}$
- Attraction: Via potential

$$
\Phi_{\beta, n}(\underline{S})=\sum_{\ell=1}^{n} \sum_{I \supset \underline{S}(\ell)} \phi_{\beta}(|I|) N(I, \underline{S}(\ell))
$$

where, for an interval I and a tuple \underline{x}

$$
N(I, \underline{x})=\max \{0,|I \cap \underline{x}|-1\} .
$$

Lemma. For all β large enough

$$
\log \mathbb{E}_{\underline{x}}\left(\mathrm{e}^{\Phi_{\beta, n}(\underline{S})} ; \mathcal{R}_{n}^{+} ; \underline{S}(n)=\underline{y}\right) \lesssim m
$$

uniformly in $m, \underline{x}, \underline{y}$ and $n \geq n_{0}$.

Attraction vrs Repulsion: m Walks

Remark: The case of SRW walks and one-point attractive potentials (only intersections are rewarded) was studied by Tanemura and Yoshida '03.

Proof in the General Case: For $\underline{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ ordered tuple and an interval I,

$$
N(\underline{z}, I)=\sum_{1}^{m} \mathbb{I}_{\left\{\left(z_{k}, z_{k+1}\right) \in I\right\}}=\sum \mathbb{I}_{\left\{\left(z_{2 k-1}, z_{2 k}\right) \in I\right\}}+\sum \mathbb{I}_{\left\{\left(z_{2 k}, z_{2 k+1}\right) \in I\right\}}
$$

On the other hand,
$\mathcal{R}_{n}^{+} \subset\left\{\bigcap_{k}\left(S_{2 k-1}(\cdot) \leq S_{2 k}(\cdot)\right)\right\} \cap\left\{\bigcap_{k}\left(S_{2 k}(\cdot) \leq S_{2 k+1}(\cdot)\right)\right\} \triangleq \mathcal{R}_{n}^{\mathrm{o},+} \cap \mathcal{R}_{n}^{\mathrm{e},+}$
Use Cauchy-Swarz to decouple between even and odd constraints and then $m-1$ times the upper bound for two walks.

Happy Birthday Funaki-san !!!

Appendix: Fluctuations of (monolayer) boundaries

- Bulk fluctuation price for V_{N} is $\sim \frac{V_{N} N^{2}}{N^{3}} \sim \frac{V_{N}}{N}$.
- Repulsion price for staying N^{α} away from the boundary is $N^{1-2 \alpha}$.

Therefore $N^{1-2 \alpha} \sim \frac{V_{N}}{N} \sim \frac{N^{1+\alpha}}{N}=N^{\alpha}$ gives $\alpha=1 / 3$.

