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1 Introduction

G = (V (G), E(G)): finite connected graph

(XG
m)m≥0: irreducible MC with trans. prob. PG(x, y), stat. prob. meas. πG(·)

pG
m(x, y) := PG

x (Xm = y)/πG({y}): the transition density of XG w.r.t. πG.

For p ∈ [1,∞], define the Lp-mixing time of G by

tpmix(G) := inf

(

m > 0 : sup
x∈V (G)

DG
p (x, m) ≤ 1/4

)

,

where DG
p (x, m) := k(pG

m(x, ·) + pG
m+1(x, ·))/2− 1kLp(πG).

(Prob.) Given a sequence of graphs (GN)N≥1, obtain asymptotic behavior of tpmix(G
N)!

When does it converge as N →∞?



Example 0: Simple RW on {1, 2, · · · , N}d. (N−1XN
[N2t]

)t≥0 → (B[0,1]d

t )t≥0

⇒ N−2tpmix({1, 2, · · · , N}d) → tpmix([0, 1]d).

Example 1: Fractal graphs (for simplicity pre-Sierpinski gasket)

GN : pre-SG, {µN
xy} random (i.i.d.) conductance µN

xy ∈ [c1, c2], XN : corresponding MC

(2−NXN
[5Nt])t≥0 → (BF

t )t≥0 in prob.,

where F is the gasket, BF is BM on F (K-Kusuoka ’96).

⇒ Using Theorem 2.2, 5−Ntpmix(G
N) → tpmix(F ) in prob..



Example 3: Erdös-Rényi random graph at critical window

G(N, p): Erdös-Rényi random graph I.e. VN := {1, 2, · · · , N} labeled vertices

Each {i, j} (i, j ∈ VN) is connected by a bond with prob. p ∼ c/N .

E.g. N = 200, c = 0.8 N = 200, c = 1.2 Pictures by C. Goldschmidt.

CN : largest connected component

c < 1 ⇒ ]CN = O(log N), c > 1 ⇒ ]CN ≥ N , c = 1 ⇒ ]CN ≥ N 2/3



Finer scaling (critical window): p = 1/N + λN−4/3 for fixed λ ∈ R

⇒ all components have size Θ(N 2/3).

Theorem 1.1 (Nachmias-Peres: AOP ’08) ∀≤ > 0, ∃A = A(≤, λ) < ∞ s.t.

P (t1mix(CN) /∈ [A−1N, AN ]) < ≤ ∀N >> 1.

Using Thm 2.2 (to be precise Thm 4.3) we can obtain the following.

Theorem 1.2 Fix p ∈ [1,∞]. If tpmix(ρ
N) is the Lp-mixing time of MC on CN

started from its root ρN , then

N−1tpmix(ρ
N)→tpmix(ρ), in distribution,

where tpmix(ρ) ∈ (0,∞) is the Lp-mixing time of the BM on M started from ρ.

Rem. We believe N−1tpmix(CN)→tpmix(M) in distri. holds.



2 Theorem

Assumption 2.1 (GN)N≥1: sequence of finite connected graphs.

∃γ(N) > 0, (N ≥ 1) s.t. ∀I compact interval,
µ°

V (GN), dGN

¢
, πN,

≥
qN
γ(N)t(x, y)

¥

x,y∈V (GN ),t∈I

∂
→ ((F, dF ) , π, (qt(x, y))x,y∈F,t∈I)

in a spectral Gromov-Hausdorff sense.

Theorem 2.2 Assume Assumption 2.1. If limt→∞ kqt(x, ·)− 1kLp(π) = 0, ∀x ∈ F ,

where p ∈ [1,∞] and qt(·, ·) is the HK, then

lim
N→∞

γ(N)−1tpmix(G
N) = tpmix(F ) ∈ (0,∞). (1)



3 Spectral Gromov-Hausdorff convergence

Limiting space (F, dF ): compact metric space

π: non-atomic Borel prob. meas. on F (full support)

(qt(x, y))x,y∈F,t>0: jointly cont. HK of a conservative irreducible Hunt proc. on F .

Assume (qt(x, y))x,y∈F,t>0 converges to stationarity in Lp-sense, i.e.

lim
t→∞

kqt(x, ·)− 1kLp(π) = 0, ∀x ∈ F. (2)

Then the Lp-mixing time of F is finite, i.e.

tpmix(F ) := inf

Ω
t > 0 : sup

x∈F
kqt(x, ·)− 1kLp(π) ≤ 1/4

æ
< ∞.



Gromov-Hausdorff distance

F, F 0: compact metric spaces

The Gromov-Hausdorff distance between F and F 0 is defined by

dGH(F, F 0) = inf
Z,φ,φ0

dZ
H(φ(F ), φ0(F 0)),

where inf is taken over all metric spaces Z, isometric embeddings φ : F → Z, φ0 : F 0 → Z.

dZ
H is the Hausdorff distance on Z.

Recall for each K, K 0 compact subsets of Z,

dZ
H(K, K 0) = inf{ε > 0 : K ⊂ K 0

ε, K
0 ⊂ Kε},

where Kε = {x ∈ Z : ρ(x, K) ≤ ε}.



Incorporating meas. and HKs

F, F 0: compact metric spaces, π, π0: Borel prob., q, q0: HK on I (compact interval)

∆I ((F, π, q), (F 0, π0, q0))

:= inf
Z,φ,φ0,C

(

dZ
H(φ(F ), φ0(F 0)) + dZ

P (π ◦ φ−1, π0 ◦ φ0−1)

+ sup
(x,x0),(y,y0)∈C

µ
dZ(φ(x), φ0(x0)) + dZ(φ(y), φ0(y0)) + sup

t∈I
|qt(x, y)− q0t(x

0, y0)|
∂)

,

where inf is taken over all metric spaces Z = (Z, dZ), isometric embeddings φ : F → Z,

φ0 : F 0 → Z, and correspondences C between F and F 0.

dZ
H : Hausdorff distance in Z, dZ

P : Prohorov distance between Borel prob’s on Z.

C: correspondence between F and F 0 Def⇔ a subset of F × F 0 s.t.

∀x ∈ F , ∃x0 ∈ F 0 s.t. (x, x0) ∈ C, and conversely ∀x0 ∈ F 0 ∃x ∈ F s.t. (x, x0) ∈ C.



For I ∈ (0,∞) compact interval,

MI : collection of (equivalence class of) triples of the form (F, π, q).

Lemma 3.1 (MI, ∆I) is a separable metric space.

(Fn, πn, qn) → (F, π, q) in a spectral Gromov-Hausdorff sense

Def⇔ limn→∞∆I((Fn, πn, qn), (F, π, q)) = 0, ∀I : compact interval

Rem. Similar notion of spectral distances were introduced in the cpt Riemannian

manifolds setting by Bérard-Besson-Gallot (’94) and by Kasue-Kumura (’94).



Under Assumption 2.1, we can isometrically embed everything into a common space!

Lemma 3.2 Suppose Assumption 2.1 holds. Then, ∀I compact interval, ∃ isometric

embeddings of (V (GN), dGN ), N ≥ 1, and (F, dF ) into a common space (E, dE) s.t.

lim
N→∞

dE
H(V (GN), F ) = 0, lim

N→∞
dE

P (πN, π) = 0,

and also,

lim
N→∞

sup
x,y∈F

sup
t∈I

ØØØqN
γ(N)t(gN(x), gN(y))− qt(x, y)

ØØØ = 0.

Here we have identified the spaces (V (GN), dGN ), N ≥ 1, and (F, dF ), and the mea-

sures upon them with their isometric embeddings in (E, dE).

For each x ∈ F , y := gN(x) ∈ V (GN) if dE(x, y) = min{dE(x, z) : z ∈ V (GN)}.



4 Sufficient conditions

Lemma 4.1 Generator of the rev. proc. has a compact resolvent ⊕ spectral gap

⇒ limt→∞ kqt(x, ·)− 1kLp(π) = 0, ∀x ∈ F, ∀p ∈ [1,∞].

Proposition 4.2 Suppose that (V (GN), dGN ), N ≥ 1, and (F, dF ) can be

isometrically embedded into ∃(E, dE) in such a way that

lim
N→∞

dE
H(V (GN), F ) = 0, lim

N→∞
dE

P (πN, π) = 0. (3)

Assume further ∃F ∗ dense
⊂ F s.t. ∀I ⊂⊂ (0,∞), x ∈ F ∗, y ∈ F , r > 0,

lim
N→∞

PGN

gN (x)

≥
XGN

bγ(N)tc ∈ BE(y, r)
¥

=

Z

BE(y,r)
qt(x, y)π(dy) uniformly for t ∈ I, (4)

lim
δ→0

lim sup
N→∞

sup
x,y,z∈V (GN ):
d
GN (y,z)≤δ

sup
t∈I

ØØØqN
γ(N)t(x, y)− qN

γ(N)t(x, z)
ØØØ = 0. (5)

⇒ Assumption 2.1 holds.



(5) looks very strict. However, when the MC is reversible and “strongly recurrent”,

one can verify this rather generally: |f (x)− f (y)|2 ≤ Reff(x, y)E(f, f).

Distinguished starting point

Theorem 4.3 Assume ∃γ(N) > 0, (N ≥ 1) s.t. ∀I compact interval,

((V (GN), dGN, ρN), πN, (qN
γ(N)t(ρ

N, x))x∈V (GN ),t∈I) → ((F, dF , ρ), π, (qt(ρ, x))x∈F,t∈I)

in a spectral pointed Gromov-Hausdorff sense, where ρN ∈ GN , ρ ∈ F .

If limt→∞ kqt(ρ, ·)− 1kLp(π) = 0, where p ∈ [1,∞] and qt(·, ·) is the HK, then

γ(N)−1tN,p
mix(ρ

N) → tpmix(ρ).



5 Examples

Example 2: Random trees

TN : Galton-Watson tree with critical (mean 1) finite var offspring distri., conditioned to

have N vertices, started from root ρN . XN : SRW on TN

(N−1/2XN
[N3/2t]

)t≥0
d→ (BT

t )t≥0,

where T is the cont. random tree (Aldous), BT is BM on T (Croydon ’10)

⇒ N−3/2tpmix(ρ
N)

d→ tpmix(ρ).

Similar results hold in infinite variance cases.



Example 3: Erdös-Rényi random graph at critical window

N−1/3CN d→ ∃M in the G-H sense (Addario-Berry, Broutin, Goldschmidt ’09)

Here M can be constructed from a (random) real tree by gluing a (random)

finite number of points as in the following figure.

XN : SRW on CN started from its root ρN .

(N−1/3XN
[Nt])t≥0

d→ (BM
t )t≥0,

where BM is the BM on M started from ρ (Croydon ’10).

We can verify the assumption in Theorem 4.3 and prove Theorem 1.2.



Example 4: High dimensional RW trace

{Sn}n: SRW on Zd (d ≥ 5), GN = S[0,N ], XN : SRW on GN .

(N−1XN
[N2t])t≥0

d→ (XR
ct )t≥0,

where XR is the BM on R := {Bd
t : t ∈ [0, 1]} (Croydon ’09).

⇒ cN−2tpmix(G
N) → tpmix(R) a.s.

γ(N) “ = ”(diam GN)d+α

where d is the volume growth exp. and α is the resistance growth exp.



6 Tail estimates (Reversible case)

(Q) How to obtain P
°
γ(N)−1tpmix(G

N) ≥ λ
¢
, P

°
γ(N)−1tpmix(G

N) ≤ λ−1
¢
?

General criteria (We don’t need spectral G-H conv. here!) Let R = diamd(GN) .

Proposition 6.1 (1) Suppose that the following hold.

P(diamR(GN) ≥ λRα) ≤ p1(λ), P(Vol (GN) ≥ λRd) ≤ p2(λ).

Then P(t∞mix(G
N) ≥ λγ(N)) ≤ p1(λ1/2/8) + p2(λ1/2), where γ(N) = Rd+α .

(2) Suppose that the following hold.

P(Vol (BR) ≥ λ±p0Rd, Reff(ρN, Bc
R) ≥ λ±p1Rα) ≥ 1− p1(λ),

P(Vol (GN) < λ−1Rd) ≤ p2(λ).

Then ∃c2, c3, p2 > 0 s.t. P(t1mix(G
N) ≤ c2λ−p2γ(N)) ≤ 2p1(λ) + p2(c3λ).


