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1 Introduction

G = (V(G), E(GQ)): finite connected graph
(XY),>0: irreducible MC with trans. prob. Pg(x,y), stat. prob. meas. 7%(-)

pC(z,y) = PY(X,, = v)/7m%({y}): the transition density of X wr.t. 7¢.

For p € |1, 00|, define the LP-mixing time of G by

. (G):=inf<m>0: sup Df(:c,m) <1/4 5,
reV(G)

where Dg(x,m) = [|(p&(z, ) +pm+1< ))/2 — 1HLp

GN)!

mix (

(Prob.) Given a sequence of graphs (GV)y>1, obtain asymptotic behavior of ¢/

When does it converge as N — oo?



Example 0: Simple RW on {1,2, -, N}¢. (N‘Eg%m%ﬂyﬁ(BP”%Qo

— NP

mix

<{17 2,0 N}d) — t?nix([ov 1]d>°

Example 1: Fractal graphs (for simplicity pre-Sierpinski gasket)

G": pre-SG, {p,} random (i.i.d.) conductance ji, € [e1, ¢, X™: corresponding MC

(Z_NX[]g]Nt])tEO — (BtF)tEO n pfOb.,
where F is the gasket, BY is BM on F' (K-Kusuoka '96).

= Using Theorem 2.2, 5 ¢

mix

(GY) =1,

mix

(F') in prob..



Example 3: Erdos-Rényi random graph at critical window
G(N,p): Erdos-Rényi random graph  lLe. Viy :={1,2,---, N} labeled vertices
Each {i, 7} (i,7 € Vi) is connected by a bond with prob. p ~ ¢/N.

E.g. N =200,c=0.8 N =200,c= 1.2 Pictures by C. Goldschmidst.

CV: largest connected component

c<1=4C"=0(ogN), c¢>1=H" =N, c=1=4C" < N??



Finer scaling (critical window): p = 1/N + AN~%3 for fixed A € R

= all components have size O(N?/3).
Theorem 1.1 (Nachmias-Peres: AOP 08) Ve > 0, 3A = A(e, \) < 00 s.t.

P(tl. (CY) ¢ [AT'N AN]) <e VN >> 1.

Using Thm 2.2 (to be precise Thm 4.3) we can obtain the following.

Theorem 1.2 Fiz p € [1,00]. Ift£. (pV) is the LP-mizing time of MC on CV

mix

started from its root p~, then
N—ltﬁllx(pN)HtﬁHX(p)? imn dzstmbutzon,

where ¥

mix

(p) € (0,00) is the LP-mixing time of the BM on M started from p.
(CY)—tP . (M) in distri. holds.

mix

Rem. We believe N~1¢

mix



2 Theorem

Assumption 2.1 (GY)y>1: sequence of finite connected graphs.

AY(N) > 0,(N > 1) s.t. VI compact interval,

((V(6")d6) 7. (o)

in a spectral Gromov-Hausdorff sense.

:v,yev(GN),teJ) — <(F’ dF) > T <Qt<xa y))x,yeF,tel)

Theorem 2.2 Assume Assumption 2.1. If limy_. ||q/(2, ) — 1| zp) =0, Vo € F,

where p € [1,00] and q(-,-) is the HK, then

lim (N)

mix
N—o0

N =t

mix

(F) € (0,00). (1)



3 Spectral Gromov-Hausdorff convergence

Limiting space (F,dp): compact metric space
7: non-atomic Borel prob. meas. on I (full support)
(qe(x,Y))zyeri=o: jointly cont. HK of a conservative irreducible Hunt proc. on F.

Assume (qi(x,y))zyeri=0 converges to stationarity in LF-sense, i.e.

lim ||gi(z, ) — 1| o) = 0, Vo € F.

t—00

Then the LP-mixing time of F is finite, i.e.

) = nt {15 02 sup (o)~ U < 14} < o0

rzel



Gromov-Hausdorff distance

F, F': compact metric spaces

The Gromov-Hausdorfl distance between F' and F” is defined by

den(F, F') = it dy(¢(F), ¢'(F")),

where inf is taken over all metric spaces Z, isometric embeddings ¢ : F — Z, ¢' - F' — Z.

d% is the Hausdorff distance on Z.

Recall for each K, K’ compact subsets of Z,
d4(K, K'Y =inf{e >0: K c K/, K' C K.},

where K. ={z € Z : p(x, K) < ¢}.



Incorporating meas. and HKs

F, F': compact metric spaces, m,n': Borel prob., ¢,¢: HK on I (compact interval)

Ar(Fym,q), (F', 7', q¢")
~ 2o {diwx O (F) +dp(mog™" 7 o ¢/™)

Z7¢7¢/7C

b s (o), 6 + del00). 60 + s laten) = )] b,
(x,2"),(y,y")eC tel

where inf is taken over all metric spaces Z = (Z, dz), isometric embeddings ¢ : F' — Z,

¢ F' — Z. and correspondences C between F' and F”.

d%: Hausdorff distance in Z, d%: Prohorov distance between Borel prob’s on Z.

C: correspondence between F and F' & a subset of F' x F’ s.t.

Ve e F, 3z € F' st. (x,2") € C, and conversely Va' € F' dx € F st. (x,2") € C.



For I € (0, 00) compact interval,

M collection of (equivalence class of) triples of the form (F), 7, q).

Lemma 3.1 (M, Aj) is a separable metric space.

(Fy, Ty qn) — (F, 7, q) in a spectral Gromov-Hausdorff sense

Def

& limy, oo A7(Fny T, Gn), (F,m,q)) =0, VI @ compact interval

Rem. Similar notion of spectral distances were introduced in the cpt Riemannian

manifolds setting by Bérard-Besson-Gallot ('94) and by Kasue-Kumura ('94).



Under Assumption 2.1, we can isometrically embed everything into a common space!

Lemma 3.2 Suppose Assumption 2.1 holds. Then, VI compact interval, 3 isometric

embeddings of (V(GN),dgn), N > 1, and (F,dr) into a common space (E,dg) s.t.

lim d%(V(G™),F)=0, lim d5(z",7) =0,

N—o0 N—o0

and also,

lim sup sup |y (gn (), gn(y)) — @z, y)| = 0.

N—00 3 yeF tel
Here we have identified the spaces (V(GY),dsn), N > 1, and (F,dr), and the mea-

sures upon them with their isometric embeddings in (E,dg).

For eachx € F, y := gn(x) € V(GY) if dp(z,y) = min{dg(z, 2) : z € V(GV)}.



4 Sufficient conditions

Lemma 4.1 Generator of the rev. proc. has a compact resolvent & spectral gap
= hnlt—>oo qut(ﬂf, ) — 1HLIJ(7T) — O, Vo € F, Vp < [1, OO]
Proposition 4.2 Suppose that (V(G"),d.~), N > 1, and (F,dp) can be

isometrically embedded into A(E, dg) in such a way that

lim d&(V(GY), F) =0, lim d&(7™,m) =0. (3)

N—o0 N—o0

Assume further JF* "EF st VI CC (0,00), z € F*, ye F, r >0,

N N .
lim PGN( ) (XS(N)H € BE(y,T)) :/B q(x,y)m(dy) uniformly fort e I, (4)

N—oc E(y.r)

limlimsup  sup Sup‘q (T, y) — qJ\EN)t(x,z) = 0. (5)
0—0 N—o0 ryzEV(GN. tel
GN(yz)<5

= Assumption 2.1 holds.



(5) looks very strict. However, when the MC is reversible and “strongly recurrent”,

one can verify this rather generally: | f(z) — f(y)|> < Reg(x,y)E(f, f).

Distinguished starting point
Theorem 4.3 Assume Fy(N) > 0,(N > 1) s.t. VI compact interval,

(VIGY) dg, p). 7% (e (07 2))weviavyaer) = (Frdp, p), m, (@u(p, @))veraer)

in a spectral pointed Gromov-Hausdorff sense, where p* € GY, p € F.

If imy oo {[qi(p, -) — 1| po(r) = 0, where p € [1,00] and g(-,-) is the HK, then

—1,N. )
V(N) 1tnﬁ£<pN> — tfnix(ﬂ)'



5 Examples

Example 2: Random trees
TV: Galton-Watson tree with critical (mean 1) finite var offspring distri., conditioned to

have N vertices, started from root p». X*: SRW on TV

— e

8 - ;EF
) g jE u
iﬂ{f;}’ly A ‘;%‘Eﬁ:‘p?i:g ?ﬁﬁ:w i;“

_ d
(N 1/2X[]]Vv3/zt]>tzo = (B )iz0,

where 7 is the cont. random tree (Aldous), B is BM on 7 (Croydon '10)

= N2 (V) St (p).

mix

Similar results hold in infinite variance cases.



Example 3: Erdos-Rényi random graph at critical window
N-13¢N % IM in the G-H sense (Addario-Berry, Broutin, Goldschmidt "09)
Here M can be constructed from a (random) real tree by gluing a (random)

finite number of points as in the following figure.

XV: SRW on C¥ started from its root p".

B d
(NTXN)iz0 = (B )iz,

where B is the BM on M started from p (Croydon '10).

We can verity the assumption in Theorem 4.3 and prove Theorem 1.2.



Example 4: High dimensional RW trace
{Su}n: SRW on Z¢ (d > 5), G = S n, X2 SRW on G.

_ d
(N7 X Nog)iz0 = (X0,

where X is the BM on R := {B¢ : t € [0,1]} (Croydon ’09).




6 Tail estimates (Reversible case)

(Q) How to obtain P (W(N)_ltp

mix(GN) > )\), P (’Y(N)_ltfmx(GN) < )\—1)?

General criteria (We don’t need spectral G-H conv. here!)  Let [R= diamg(G)]
Proposition 6.1 (1) Suppose that the following hold.
P(diamp(G") > ARY) < pi(\), P(Vol (GY) > ARY) < py(N).

Then P(t3,(GY) > M(N)) < pr(A2/8) + po(A1V2), where | SNDIESNRG

(2) Suppose that the following hold.

P(Vol (Bg) < R Rg(p”, BS) < A*P1R%)

'V

1 —p1(N),
P(Vol (G™) < ATRY) < po(N).

Then 3ca, c3,p2 > 0 s.t. P(tL (GY) < ol P29(N)) < 2p1(N) + palcs).



