Convergence of mixing times for sequences of random walks on finite graphs
舟木さん, 還暦おめでとうございます。
（Happy 60th birthday，Funaki－san！）
Takashi Kumagai（RIMS，Japan）
Joint work with D．A．Croydon（Warwick）and B．M．Hambly（Oxford）． 6 December 2011 at Kochi

1 Introduction

$G=(V(G), E(G)):$ finite connected graph
$\left(X_{m}^{G}\right)_{m \geq 0}$: irreducible MC with trans. prob. $P_{G}(x, y)$, stat. prob. meas. $\pi^{G}(\cdot)$ $p_{m}^{G}(x, y):=\mathbf{P}_{x}^{G}\left(X_{m}=y\right) / \pi^{G}(\{y\})$: the transition density of X^{G} w.r.t. π^{G}.

For $p \in[1, \infty]$, define the L^{p}-mixing time of G by

$$
t_{\mathrm{mix}}^{p}(G):=\inf \left\{m>0: \sup _{x \in V(G)} D_{p}^{G}(x, m) \leq 1 / 4\right\}
$$

where $D_{p}^{G}(x, m):=\left\|\left(p_{m}^{G}(x, \cdot)+p_{m+1}^{G}(x, \cdot)\right) / 2-1\right\|_{L^{p}\left(\pi^{G}\right)}$.
(Prob.) Given a sequence of graphs $\left(G^{N}\right)_{N \geq 1}$, obtain asymptotic behavior of $t_{\text {mix }}^{p}\left(G^{N}\right)$! When does it converge as $N \rightarrow \infty$?

Example 0: Simple RW on $\{1,2, \cdots, N\}^{d} . \quad\left(N^{-1} X_{\left[N^{2} t\right]}^{N}\right)_{t \geq 0} \rightarrow\left(B_{t}^{[0,1]^{d}}\right)_{t \geq 0}$

$$
\Rightarrow N^{-2} t_{\text {mix }}^{p}\left(\{1,2, \cdots, N\}^{d}\right) \rightarrow t_{\text {mix }}^{p}\left([0,1]^{d}\right)
$$

Example 1: Fractal graphs (for simplicity pre-Sierpinski gasket) G^{N} : pre-SG, $\left\{\mu_{x y}^{N}\right\}$ random (i.i.d.) conductance $\mu_{x y}^{N} \in\left[c_{1}, c_{2}\right], X^{N}$: corresponding MC

$$
\left(2^{-N} X_{\left[5^{N} t\right]}^{N}\right)_{t \geq 0} \rightarrow\left(B_{t}^{F}\right)_{t \geq 0} \quad \text { in prob. }
$$

where F is the gasket, B^{F} is BM on F (K-Kusuoka '96).

$$
\Rightarrow \text { Using Theorem 2.2, } 5^{-N} t_{\text {mix }}^{p}\left(G^{N}\right) \rightarrow t_{\text {mix }}^{p}(F) \text { in prob.. }
$$

Example 3: Erdös-Rényi random graph at critical window

$G(N, p)$: Erdös-Rényi random graph
I.e. $V_{N}:=\{1,2, \cdots, N\}$ labeled vertices

Each $\{i, j\}\left(i, j \in V_{N}\right)$ is connected by a bond with prob. $p \sim c / N$.

$$
\text { E.g. } N=200, c=0.8 \quad N=200, c=1.2 \quad \text { Pictures by C. Goldschmidt. }
$$

\mathcal{C}^{N} : largest connected component
$c<1 \Rightarrow \not \mathbb{C}^{N}=O(\log N)$,
$c>1 \Rightarrow \sharp \mathcal{C}^{N} \asymp N$,
$c=1 \Rightarrow \not \mathbb{C}^{N} \asymp N^{2 / 3}$

Finer scaling (critical window): $\quad p=1 / N+\lambda N^{-4 / 3}$ for fixed $\lambda \in \mathbb{R}$
\Rightarrow all components have size $\Theta\left(N^{2 / 3}\right)$.
Theorem 1.1 (Nachmias-Peres: $A O P{ }^{\prime}$ '08) $\forall \epsilon>0, \exists A=A(\epsilon, \lambda)<\infty$ s.t.

$$
P\left(t_{\text {mix }}^{1}\left(\mathcal{C}^{N}\right) \notin\left[A^{-1} N, A N\right]\right)<\epsilon \quad \forall N \gg 1
$$

Using Thm 2.2 (to be precise Thm 4.3) we can obtain the following.
Theorem 1.2 Fix $p \in[1, \infty]$. If $t_{\text {mix }}^{p}\left(\rho^{N}\right)$ is the L^{p}-mixing time of $M C$ on \mathcal{C}^{N} started from its root ρ^{N}, then

$$
N^{-1} t_{\text {mix }}^{p}\left(\rho^{N}\right) \rightarrow t_{\text {mix }}^{p}(\rho), \quad \text { in distribution },
$$

where $t_{\text {mix }}^{p}(\rho) \in(0, \infty)$ is the L^{p}-mixing time of the $B M$ on \mathcal{M} started from ρ.
Rem. We believe $N^{-1} t_{\text {mix }}^{p}\left(\mathcal{C}^{N}\right) \rightarrow t_{\text {mix }}^{p}(\mathcal{M})$ in distri. holds.

2 Theorem

Assumption $2.1\left(G^{N}\right)_{N \geq 1}$: sequence of finite connected graphs.

$$
\exists \gamma(N)>0,(N \geq 1) \text { s.t. } \forall I \text { compact interval, }
$$

$$
\left(\left(V\left(G^{N}\right), d_{G^{N}}\right), \pi^{N},\left(q_{\gamma(N) t}^{N}(x, y)\right)_{x, y \in V\left(G^{N}\right), t \in I}\right) \rightarrow\left(\left(F, d_{F}\right), \pi,\left(q_{t}(x, y)\right)_{x, y \in F, t \in I}\right)
$$

in a spectral Gromov-Hausdorff sense.

Theorem 2.2 Assume Assumption 2.1. If $\lim _{t \rightarrow \infty}\left\|q_{t}(x, \cdot)-1\right\|_{L^{p}(\pi)}=0, \forall x \in F$, where $p \in[1, \infty]$ and $q_{t}(\cdot, \cdot)$ is the $H K$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \gamma(N)^{-1} t_{\text {mix }}^{p}\left(G^{N}\right)=t_{\text {mix }}^{p}(F) \in(0, \infty) \tag{1}
\end{equation*}
$$

3 Spectral Gromov-Hausdorff convergence

Limiting space $\left(F, d_{F}\right)$: compact metric space
π : non-atomic Borel prob. meas. on F (full support)
$\left(q_{t}(x, y)\right)_{x, y \in F, t>0}$: jointly cont. HK of a conservative irreducible Hunt proc. on F.
Assume $\left(q_{t}(x, y)\right)_{x, y \in F, t>0}$ converges to stationarity in L^{p}-sense, i.e.

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|q_{t}(x, \cdot)-1\right\|_{L^{p}(\pi)}=0, \quad \forall x \in F \tag{2}
\end{equation*}
$$

Then the L^{p}-mixing time of F is finite, i.e.

$$
t_{\text {mix }}^{p}(F):=\inf \left\{t>0: \sup _{x \in F}\left\|q_{t}(x, \cdot)-1\right\|_{L^{p}(\pi)} \leq 1 / 4\right\}<\infty
$$

Gromov-Hausdorff distance

F, F^{\prime} : compact metric spaces
The Gromov-Hausdorff distance between F and F^{\prime} is defined by

$$
d_{G H}\left(F, F^{\prime}\right)=\inf _{Z, \phi, \phi^{\prime}} d_{H}^{Z}\left(\phi(F), \phi^{\prime}\left(F^{\prime}\right)\right),
$$

where inf is taken over all metric spaces Z, isometric embeddings $\phi: F \rightarrow Z, \phi^{\prime}: F^{\prime} \rightarrow Z$.
d_{H}^{Z} is the Hausdorff distance on Z.
Recall for each K, K^{\prime} compact subsets of Z,

$$
d_{H}^{Z}\left(K, K^{\prime}\right)=\inf \left\{\varepsilon>0: K \subset K_{\varepsilon}^{\prime}, K^{\prime} \subset K_{\varepsilon}\right\}
$$

where $K_{\varepsilon}=\{x \in Z: \rho(x, K) \leq \varepsilon\}$.

Incorporating meas. and HKs

$F, F^{\prime}:$ compact metric spaces, $\pi, \pi^{\prime}:$ Borel prob., $q, q^{\prime}:$ HK on I (compact interval)

$$
\begin{aligned}
\Delta_{I} & \left((F, \pi, q),\left(F^{\prime}, \pi^{\prime}, q^{\prime}\right)\right) \\
:= & \inf _{Z, \phi, \phi^{\prime}, \mathcal{C}}\left\{d_{H}^{Z}\left(\phi(F), \phi^{\prime}\left(F^{\prime}\right)\right)+d_{P}^{Z}\left(\pi \circ \phi^{-1}, \pi^{\prime} \circ \phi^{\prime-1}\right)\right. \\
& \left.+\sup _{\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in \mathcal{C}}\left(d_{Z}\left(\phi(x), \phi^{\prime}\left(x^{\prime}\right)\right)+d_{Z}\left(\phi(y), \phi^{\prime}\left(y^{\prime}\right)\right)+\sup _{t \in I}\left|q_{t}(x, y)-q_{t}^{\prime}\left(x^{\prime}, y^{\prime}\right)\right|\right)\right\}
\end{aligned}
$$

where inf is taken over all metric spaces $Z=\left(Z, d_{Z}\right)$, isometric embeddings $\phi: F \rightarrow Z$, $\phi^{\prime}: F^{\prime} \rightarrow Z$, and correspondences \mathcal{C} between F and F^{\prime}.
d_{H}^{Z} : Hausdorff distance in $Z, \quad d_{P}^{Z}$: Prohorov distance between Borel prob's on Z.
\mathcal{C} : correspondence between F and $F^{\prime} \stackrel{\text { Def }}{\Leftrightarrow}$ a subset of $F \times F^{\prime}$ s.t.
$\forall x \in F, \exists x^{\prime} \in F^{\prime}$ s.t. $\left(x, x^{\prime}\right) \in \mathcal{C}$, and conversely $\forall x^{\prime} \in F^{\prime} \exists x \in F$ s.t. $\left(x, x^{\prime}\right) \in \mathcal{C}$.

For $I \in(0, \infty)$ compact interval,
\mathcal{M}_{I} : collection of (equivalence class of) triples of the form (F, π, q).

Lemma $3.1\left(\mathcal{M}_{I}, \Delta_{I}\right)$ is a separable metric space.
$\left(F_{n}, \pi_{n}, q_{n}\right) \rightarrow(F, \pi, q)$ in a spectral Gromov-Hausdorff sense
$\stackrel{\text { Def }}{\Leftrightarrow} \lim _{n \rightarrow \infty} \Delta_{I}\left(\left(F_{n}, \pi_{n}, q_{n}\right),(F, \pi, q)\right)=0, \quad \forall I:$ compact interval

Rem. Similar notion of spectral distances were introduced in the cpt Riemannian manifolds setting by Bérard-Besson-Gallot ('94) and by Kasue-Kumura ('94).

Under Assumption 2.1, we can isometrically embed everything into a common space!

Lemma 3.2 Suppose Assumption 2.1 holds. Then, $\forall I$ compact interval, \exists isometric embeddings of $\left(V\left(G^{N}\right), d_{G^{N}}\right), N \geq 1$, and $\left(F, d_{F}\right)$ into a common space $\left(E, d_{E}\right)$ s.t.

$$
\lim _{N \rightarrow \infty} d_{H}^{E}\left(V\left(G^{N}\right), F\right)=0, \quad \lim _{N \rightarrow \infty} d_{P}^{E}\left(\pi^{N}, \pi\right)=0
$$

and also,

$$
\lim _{N \rightarrow \infty} \sup _{x, y \in F} \sup _{t \in I}\left|q_{\gamma(N) t}^{N}\left(g_{N}(x), g_{N}(y)\right)-q_{t}(x, y)\right|=0
$$

Here we have identified the spaces $\left(V\left(G^{N}\right), d_{G^{N}}\right), N \geq 1$, and $\left(F, d_{F}\right)$, and the measures upon them with their isometric embeddings in $\left(E, d_{E}\right)$.

For each $x \in F, y:=g_{N}(x) \in V\left(G^{N}\right)$ if $d_{E}(x, y)=\min \left\{d_{E}(x, z): z \in V\left(G^{N}\right)\right\}$.

4 Sufficient conditions

Lemma 4.1 Generator of the rev. proc. has a compact resolvent \oplus spectral gap

$$
\Rightarrow \lim _{t \rightarrow \infty}\left\|q_{t}(x, \cdot)-1\right\|_{L^{p}(\pi)}=0, \quad \forall x \in F, \forall p \in[1, \infty] .
$$

Proposition 4.2 Suppose that $\left(V\left(G^{N}\right), d_{G^{N}}\right), N \geq 1$, and $\left(F, d_{F}\right)$ can be isometrically embedded into $\exists\left(E, d_{E}\right)$ in such a way that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} d_{H}^{E}\left(V\left(G^{N}\right), F\right)=0, \quad \lim _{N \rightarrow \infty} d_{P}^{E}\left(\pi^{N}, \pi\right)=0 \tag{3}
\end{equation*}
$$

Assume further $\exists F^{*} \subset \subset$ dense F s.t. $\forall I \subset \subset(0, \infty), x \in F^{*}, y \in F, r>0$,

$$
\begin{align*}
& \quad \lim _{N \rightarrow \infty} \mathbf{P}_{g_{N}(x)}^{G^{N}}\left(X_{\lfloor\gamma(N) t\rfloor}^{G^{N}} \in B_{E}(y, r)\right)=\int_{B_{E}(y, r)} q_{t}(x, y) \pi(d y) \text { uniformly for } t \in I, \tag{4}\\
& \quad \lim _{\delta \rightarrow 0} \limsup _{N \rightarrow \infty} \sup _{\substack{x, y, z \in V\left(G^{N}\right): \\
d_{d^{N}}(y, z) \leq \delta}} \sup _{t \in I}\left|q_{\gamma(N) t}^{N}(x, y)-q_{\gamma(N) t}^{N}(x, z)\right|=0 . \tag{5}\\
& \Rightarrow \quad \text { Assumption } 2.1 \text { holds. }
\end{align*}
$$

(5) looks very strict. However, when the MC is reversible and "strongly recurrent", one can verify this rather generally: $|f(x)-f(y)|^{2} \leq R_{\text {eff }}(x, y) \mathcal{E}(f, f)$.

Distinguished starting point

Theorem 4.3 Assume $\exists \gamma(N)>0,(N \geq 1)$ s.t. $\forall I$ compact interval,

$$
\left(\left(V\left(G^{N}\right), d_{G^{N}}, \rho^{N}\right), \pi^{N},\left(q_{\gamma(N) t}^{N}\left(\rho^{N}, x\right)\right)_{x \in V\left(G^{N}\right), t \in I}\right) \rightarrow\left(\left(F, d_{F}, \rho\right), \pi,\left(q_{t}(\rho, x)\right)_{x \in F, t \in I}\right)
$$

in a spectral pointed Gromov-Hausdorff sense, where $\rho^{N} \in G^{N}, \rho \in F$.
If $\lim _{t \rightarrow \infty}\left\|q_{t}(\rho, \cdot)-1\right\|_{L^{p}(\pi)}=0$, where $p \in[1, \infty]$ and $q_{t}(\cdot, \cdot)$ is the HK, then

$$
\gamma(N)^{-1} t_{\text {mix }}^{N, p}\left(\rho^{N}\right) \rightarrow t_{\text {mix }}^{p}(\rho)
$$

5 Examples

Example 2: Random trees
T^{N} : Galton-Watson tree with critical (mean 1) finite var offspring distri., conditioned to have N vertices, started from root $\rho^{N} . X^{N}: \operatorname{SRW}$ on T^{N}

$$
\left(N^{-1 / 2} X_{\left[N^{3 / 2} / 2\right]}^{N}\right)_{t \geq 0} \xrightarrow{d}\left(B_{t}^{\mathcal{T}}\right)_{t \geq 0},
$$

where \mathcal{T} is the cont. random tree (Aldous), $B^{\mathcal{T}}$ is BM on \mathcal{T} (Croydon '10)

$$
\Rightarrow N^{-3 / 2} t_{\text {mix }}^{p}\left(\rho^{N}\right) \xrightarrow{d} t_{\text {mix }}^{p}(\rho) .
$$

Similar results hold in infinite variance cases.

Example 3: Erdös-Rényi random graph at critical window $N^{-1 / 3} \mathcal{C}^{N} \xrightarrow{d} \exists \mathcal{M}$ in the G-H sense (Addario-Berry, Broutin, Goldschmidt '09)

Here \mathcal{M} can be constructed from a (random) real tree by gluing a (random) finite number of points as in the following figure.

$X^{N}:$ SRW on \mathcal{C}^{N} started from its root ρ^{N}.

$$
\left(N^{-1 / 3} X_{[N t]}^{N}\right)_{t \geq 0} \xrightarrow{d}\left(B_{t}^{\mathcal{M}}\right)_{t \geq 0},
$$

where $B^{\mathcal{M}}$ is the BM on \mathcal{M} started from ρ (Croydon '10).
We can verify the assumption in Theorem 4.3 and prove Theorem 1.2.

Example 4: High dimensional RW trace
$\left\{S_{n}\right\}_{n}$: SRW on $\mathbb{Z}^{d}(d \geq 5), G^{N}=S_{[0, N]}, X^{N}:$ SRW on G^{N}.

$$
\left(N^{-1} X_{\left[N^{2} t\right]}^{N}\right)_{t \geq 0} \xrightarrow{d}\left(X_{c t}^{\mathcal{R}}\right)_{t \geq 0},
$$

where $X^{\mathcal{R}}$ is the BM on $\mathcal{R}:=\left\{B_{t}^{d}: t \in[0,1]\right\}$ (Croydon '09).

$$
\gamma(N) "="\left(\operatorname{diam} G^{N}\right)^{d+\alpha}
$$

where d is the volume growth exp. and α is the resistance growth exp.

6 Tail estimates (Reversible case)
(Q) How to obtain $\mathbf{P}\left(\gamma(N)^{-1} t_{\text {mix }}^{p}\left(G^{N}\right) \geq \lambda\right), \mathbf{P}\left(\gamma(N)^{-1} t_{\text {mix }}^{p}\left(G^{N}\right) \leq \lambda^{-1}\right)$?

General criteria (We don't need spectral G-H conv. here!) Let $R=\operatorname{diam}_{d}\left(G^{N}\right)$

Proposition 6.1 (1) Suppose that the following hold.

$$
\mathbf{P}\left(\operatorname{diam}_{R}\left(G^{N}\right) \geq \lambda R^{\alpha}\right) \leq p_{1}(\lambda), \quad \mathbf{P}\left(\operatorname{Vol}\left(G^{N}\right) \geq \lambda R^{d}\right) \leq p_{2}(\lambda)
$$

Then $\mathbf{P}\left(t_{\text {mix }}^{\infty}\left(G^{N}\right) \geq \lambda \gamma(N)\right) \leq p_{1}\left(\lambda^{1 / 2} / 8\right)+p_{2}\left(\lambda^{1 / 2}\right)$, where $\gamma(N)=R^{d+\alpha}$.
(2) Suppose that the following hold.

$$
\begin{aligned}
\mathbf{P}\left(\operatorname{Vol}\left(B_{R}\right) \asymp \lambda^{ \pm p_{0}} R^{d}, R_{\mathrm{eff}}\left(\rho^{N}, B_{R}^{c}\right) \asymp \lambda^{ \pm p_{1}} R^{\alpha}\right) & \geq 1-p_{1}(\lambda), \\
\mathbf{P}\left(\operatorname{Vol}\left(G^{N}\right)<\lambda^{-1} R^{d}\right) & \leq p_{2}(\lambda) .
\end{aligned}
$$

Then $\exists c_{2}, c_{3}, p_{2}>0$ s.t. $\mathbf{P}\left(t_{\text {mix }}^{1}\left(G^{N}\right) \leq c_{2} \lambda^{-p_{2}} \gamma(N)\right) \leq 2 p_{1}(\lambda)+p_{2}\left(c_{3} \lambda\right)$.

