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Microscopic interface

Interface φ = {φ(x) ∈ R; x ∈ Zd}

Zd( )Rd

Á( )x

x

φ(x): the height at position x
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Energy of miscroscopic interface

Energy of the microscopic interface φ = {φ(x) ∈ R; x ∈ Zd}

H(φ) =
1
2

∑
x ,y∈Zd ,|x−y |=1

V (φ(x) − φ(y))

(V : R → R is C2, symm., ‖V ′′‖∞ < ∞)
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Dynamics - Langevin equation

Langevin eq.

dφt(x) = − ∂H
∂φ(x)

(φt)dt +
√

2dwt(x), (1)

for

x ∈ ΓN = (Z/NZ)d with periodic b.c.

x ∈ DN = ND ∩ Zd with Dirichlet b.c.

w = {wt(x); x ∈ ΓN}: independent 1D B.m.’s
∂H

∂φ(x)
=

∑
y :|x−y |=1

V ′(φ(x) − φ(y))

Takao Nishikawa Hydrodynamic limit with boundary condition



Model
Main Result

Rough sketch of the proof

Dynamics - Langevin equation

Langevin eq.

dφt(x) = − ∂H
∂φ(x)

(φt)dt +
√

2dwt(x), (1)

for

x ∈ ΓN = (Z/NZ)d with periodic b.c.

x ∈ DN = ND ∩ Zd with Dirichlet b.c.

w = {wt(x); x ∈ ΓN}: independent 1D B.m.’s
∂H

∂φ(x)
=

∑
y :|x−y |=1

V ′(φ(x) − φ(y))

Takao Nishikawa Hydrodynamic limit with boundary condition



Model
Main Result

Rough sketch of the proof

Hydrodynamic scaling limit (LLN)

Macroscopic interface hN(t , θ)
(t ∈ [0, t ], θ ∈ [0, 1)d =: Td or θ ∈ D)

hN(t , x/N) = N−1φN2t(x), x ∈ ΓN

Theorem (Funaki-Spohn for ΓN , N. for DN with Dirichlet b.c.)

If V is strictly convex, i.e., there exist c−, c+ > 0 such that

c− ≤ V ′′(η) ≤ c+, η ∈ R

we have

hN −→ h :
∂h
∂t

= div {(∇σ)(∇h)} (2)

where σ : Rd → R is the surface tension introduced via
thermodynamic limit.
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Total surface tension

The equation (2) is the gradient flow with respect to the energy
functional

Σ(h) =

∫
σ(∇h(θ)) dθ (3)

in L2-space. The functional Σ is called ”total surface tension,”
which gives the total energy of the interface h.

Remark

The assumption “V is strictly convex” can be relaxed. If we
have the convexity of σ (see Cotar-Deuschel-Müller and
Cotar-Deuschel) and the characterization of Gibbs measures
for gradient fields, we can show the hydrodynamic limit. (joint
work with J.-D. Deuschel and Y. Vignard)
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Dynamics with a conservation law

Let us consider

dφt(x) = ∆

{
∂H

∂φ(·)
(φt)

}
(x)dt +

√
2dw̃t(x), (4)

for

x ∈ ΓN = (Z/NZ)d with periodic b.c.

x ∈ DN = ND ∩ Zd with Dirichlet b.c.

w̃ = {w̃t(x); x ∈ ΓN}: Gaussian process with cov.

E [w̃s(x)w̃t(y)] = −∆(x , y)s ∧ t
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Dynamics with a conservation law

∆: (discrete) Laplacian

∆f (x) =
∑

y∈ΓN ,|x−y |=1

(f (y) − f (x)), x ∈ ΓN

Remark

By Itô’s formula, it is easy to see∑
x∈ΓN

φt(x) ≡
∑

x∈ΓN

φ0(x) (= const.), t ≥ 0, (5)

that is, the total sum of the height variable (; number of
particle) is conserved by this time evolution.
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Hydrodynamic scaling limit on the periodic torus

Macroscopic interface hN(t , θ)(t ∈ [0, t ], θ ∈ [0, 1)d =: Td)

hN(t , x/N) = N−1φN4t(x), x ∈ ΓN

Theorem (N. 2002)

If V is strictly convex, i.e., there exist c−, c+ > 0 such that

c− ≤ V ′′(η) ≤ c+, η ∈ R

we have

hN −→ h :
∂h
∂t

= −∆ div {(∇σ)(∇h)}

where σ : Rd → R is the surface tension introduced via
thermodynamic limit.
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Problem

What happen in the case with Dirichlet b.c.?
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Hydrodynamic scaling limit on finite domain

Theorem

Let D be a finite, convex domain with Lipschitz boundary. We
assume that there exists h0 ∈ H−1(D) such that

lim
N→∞

E‖hN(0) − h0‖2
L2(D) = 0

We then have

lim
N→∞

E‖hN(t) − h(t)‖2
H1(D)∗ = 0,

where h is the weak solution of nonlinear PDE

∂h
∂t

= −∆ div {(∇σ)(∇h)} . (6)
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Functional spaces

Since the solution h should satisfy

〈h(t), 1〉 ≡ 〈h0, 1〉,

h(t) runs over an affine space.

We shall thus consider the tangential space:

H =
{

h ∈ H1(D)∗; H1(D)∗〈h, 1〉H1(D) = 0
}

V =
{

h ∈ H1
0 (D); H1(D)∗〈h, 1〉H1(D) = 0

}
V ⊂ H ' H∗ ⊂ V ∗
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Nonlinear partial differential operator

For f ∈ H1
0 (D), we define Af : V → V ∗ by

Af (h) = −∆[div{(∇σ)(∇h + ∇f )}

(single valued, monotone, coersive operator)
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Formulation of PDE

We call h = h(t , θ) the solution of PDE (6) when there exists a
function f ∈ H1

0 (D) s.t.

1 〈h0, 1〉 = 〈f , 1〉
2 hf ≡ h − f : [0, T ] → V ∗ is absolutely continuous in t and

hf ∈ C([0, T ]; H) ∩ L2(0, T ; V ) ∩ W 1,2([0, T ], V ∗)

3 hf satisfies

hf (t) = (h0 − f ) +

∫ t

0
Af (hf (s)) ds in V ∗

for a.e. t ∈ [0, T ].
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Limit of h(t) as t → ∞

The solution h(t) is gradient flow with respect to

Σ(h) =

∫
D

σ(∇h(θ)) dθ

under the H−1 metric.
The limit of h(t) as t → ∞ is

arg inf{Σ(h); 〈h, 1〉 = c},

which coincides “Wulff shape” obtained by
[Deuschel-Giacomin-Ioffe ’00].
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How to show

The proof is by H−1-method in

Funaki-Spohn, Commun. Math. Phys. (’97)

N., Probab. J. Math. Univ. Tokyo (’02)

N., Probab. Theory Relat. Fields (’03)
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What we need to do

Following the results stated before, we have the conclusion
once we have

1 a priori bounds for stochastic dynamics

2 a priori bounds for discretized equation corresponding to
(6)

3 uniqueness of ergodic stationary measure
(In [N. 03] this property plays a key role.)

4 establish local equilibrium

5 derive PDE (6)

Major issues are 2 and 3.
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Notations

(Zd)∗: all oriented bonds in Zd , i.e.

(Zd)∗ = {(x , y) ∈ Zd × Zd ; |x − y | = 1}

∇: discrete gradient

∇φ(b) = φ(x) − φ(y), b = (x , y)

X =
{
∇φ ∈ R(Zd )∗ ; φ ∈ RZd

}
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Dynamics on the gradient field

For the solution φt of SDE (1), ηt = ∇φt satisfies

dηt(b) = −∇∆U·(ηt)(b) dt +
√

2d∇w̃t(b), (7)

where
Ux(η) :=

∑
b:xb=x

V ′(η(b)).

The generator for (7) is given by

L =
∑
x∈Zd

Lx ,

Lx = −∂x∆∂(x) + ∆U·(x)∂x ,

∂x = 2
∑

b:xb=x

∂

∂η(b)
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Stationary measures and Gibbs measures

Theorem

Let a measure µ on X be invariant under spatial shift and
tempered, that is,

Eµ[η(b)2] < ∞, b ∈
(
Zd

)∗
.

holds. If µ is a stationary measure corresponding L , i.e.,∫
X

L f (η)µ(dη) = 0

holds for every f ∈ C2
loc(X ), µ is then the Gibbs measure

introduced by [Funaki-Spohn].
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Proof of Theorem

We shall apply the same method in [Deuschel-N.-Vignard, in
preparation], which is based on [Fritz, 1982]. The key
ingredient is to show

lim
n→∞

n−d IΛn(µ|Λn) = 0, (8)

where

IΛn(ν) = EΛn(
√

f ,
√

f ), f =
dν

dµΛn

µΛn : finite volume Gibbs measure on Λn := [−n, n]d with
free boundary condition

EΛn : Dirichlet form for the time evolution on Λn with free
boundary condition
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Thank you for your attention!
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