Spectral gap for energy exchange models with rate functions approaching zero

Makiko Sasada

Department of Mathematics, Keio University

Kochi, December 5, 2011

Background

Gaspard-Gilbert (2008,2009):

- Goal: Derivation of heat equation or Fourier law of heat conduction from Newtonian dynamics
- Model: Localized hard disks (balls) in 2 and 3 dimensions
- Two step approach
 - Derive a mesoscopic master equation (Markov jump process) from the microscopic dynamics (heuristically)
 - Derive a macroscopic HDL equation from the mesoscopic dynamics

Grigo-Khanin-Szász (2011):

- Model: Introduce a class of (mesoscopic) stochastic models including GG models
- First step of the derivation of HDL eq.: Study the spectral gap

Energy exchange model

Introduced by Grigo-Khanin-Szász

• \mathbb{R}^{N}_{+} : state space

Į

- $x = (x_i)_{i=1}^N$: element of \mathbb{R}^N_+
- x_i : energy of particle at site i

 $\{X(t)\}_{t\geq 0}$: Markov process on \mathbb{R}^N_+ with generator \mathcal{L} acting on bounded functions $A: \mathbb{R}^N_+ \to \mathbb{R}$ is

$$\mathcal{CA}(x) = \sum_{i=1}^{N-1} \Lambda(x_i, x_{i+1}) \int P(x_i, x_{i+1}, d\alpha) [A(T_{i,i+1,\alpha}x) - A(x)]$$
$$(T_{i,i+1,\alpha}x)_k = \begin{cases} \alpha(x_i + x_{i+1}) & \text{if } k = i \\ (1 - \alpha)(x_i + x_{i+1}) & \text{if } k = i + 1 \\ x_k & \text{if } k \neq i, i + 1 \end{cases}$$

• $\Lambda : \mathbb{R}^2_+ \to \mathbb{R}_+$: rate of collision, continuous • $P(\cdot, \cdot, d\alpha)$: probability measure on [0, 1]

Energy exchange model

Spectral gap

• Total energy is conserved

•
$$S_{N,e} := \{x \in \mathbb{R}^N_+; \frac{1}{N} \sum_{i=1}^N x_i = e\}$$
: microcanonical surface with average energy e

• Assume that there exists a reversible measure $\pi_{N,e}$ for X_t on each $\mathcal{S}_{N,e}$

Dirichlet form associated to $\pi_{N,e}$:

$$\mathcal{D}_{N,e}(A) := \int \pi_{N,e}(dx) [-\mathcal{L}A](x) A(x)$$

$$\begin{split} \lambda(N,e) &:= \inf_{A} \Big\{ \frac{\mathcal{D}_{N,e}(A)}{E_{\pi_{N,e}[A^2]}} \Big| E_{\pi_{N,e}}[A] = 0, \ A \in L^2(\pi_{N,e}) \Big\}.\\ \lambda(N,e) &: \text{ spectral gap of } -\mathcal{L} \text{ on } \mathcal{S}_{N,e} \end{split}$$

Spectral gap

Grigo-Khanin-Szász showed

There exists a positive constant C such that for all $N \ge 2$ and e > 0,

$$\lambda(N, e) \geq \frac{C}{N^2}$$

under the following conditions

- There exist a constant $\Lambda^* > 0$ such that $\Lambda(E_1, E_2) \ge \Lambda^*$
- Some assumptions for P and $\pi_{N,e}$

Product reversible measure

 $\nu_{d,e}(dx) = \frac{x^{\frac{d}{2}-1}exp(-\frac{x}{e})}{e^{\frac{d}{2}}\Gamma(\frac{d}{2})}dx$: Gamma dist. with parameters d > 0, e > 0

Theorem (Grigo-Khanin-Szász, 2011)

If $\Lambda(E_1, E_2)$ and $P(E_1, E_2, d\alpha)$ are of the form ("mechanical form")

•
$$\Lambda(E_1, E_2) = \Lambda_s(E_1 + E_2) \Lambda_r(\frac{E_1}{E_1 + E_2})$$

•
$$P(E_1, E_2, d\alpha) = P(\frac{E_1}{E_1 + E_2}, d\alpha)$$

And also, if

- $P(\beta, d\alpha)$ has a unique invariant distribution on [0, 1]
- $\Lambda(E_1,E_2)>0$ for all $(E_1,E_2)\in\mathbb{R}^2_+$
- there is a product measure μ(dx) = ν(dx₁)ν(dx₂)···ν(dx_N) which is reversible for X_t

then ν is a Dirac measure or $\nu = \nu_{d,e}$ for some d > 0 and e > 0.

Energy exchange model

Mesoscopic generator in the GG model

Introduced by Gaspard-Gilbert (3-dimensional case)

•
$$\Lambda_s(s) = s^{1/2}$$
, $\Lambda_r(\beta) = \frac{\sqrt{2\pi}}{6} \frac{\frac{1}{2} + \beta \vee (1-\beta)}{\sqrt{\beta \vee (1-\beta)}}$

•
$$P(\beta, d\alpha) = \frac{3}{2} \frac{1 \wedge \sqrt{\frac{\alpha \wedge (1-\alpha)}{\beta \wedge (1-\beta)}}}{\frac{1}{2} + \beta \vee (1-\beta)} d\alpha$$

• Reversible with respect to $\nu_{3,e}^N$ for all e > 0 (Therefore $\pi_{N,e}$ is the conditional probability of $\nu_{3,1}^N$ (or any $\nu_{3,e}^N$) on $S_{N,e}$)

$$\Rightarrow \lambda(N,e) = \sqrt{e}\lambda(N,1)$$
 (by change of variables)

Question
$$\exists C > 0 \ s.t. \ \lambda(N, e) \ge \sqrt{e} \frac{C}{N^2}$$
??

Remark

GG model in 2-dimension is also of the mechanical form with $\Lambda_s(s) = s^{1/2}$, and reversible with respect to $\nu_{2,e}^N$ for all e > 0

Stick processes that scale to the porous medium equation

Introduced by Feng-Iscoe-Seppäläinen

For each m > 0

- $\Lambda_{s}(s) = s^{m}, \Lambda_{r}(\beta) = \beta^{m} + (1 \beta)^{m}, P(\beta, d\alpha) = \frac{m|\beta \alpha|^{m-1}}{\Lambda_{r}(\beta)} d\alpha$
- Reversible with respect to $\nu_{2,e}^N$ for all e>0
- Gradient model
- HD equation (Porous medium equation) : $\partial_t \rho = \Delta(\rho^{m+1})$

 $\Rightarrow \lambda(N, e) = e^m \lambda(N, 1)$ (by change of variables)

Question
$$\exists C > 0 \ s.t. \ \lambda(N, e) \ge e^m \frac{C}{N^2}$$
??

Assumptions and main result

- Assume that $\pi_{N,e}$ is the conditional probability of $\nu_{d,1}^N$ (or any $\nu_{d,e}^N$) on $S_{N,e}$ for some d > 0
- Assume that $\lambda(2, e) \ge Ke^m$ for some K > 0 and m > 0(If $\lambda(2, 1) > 0$ and $\lambda(2, e) = e^m \lambda(2, 1)$, then it is satisfied) (This is also "necessary condition")

Main result

Under the assumptions, if $m \ge 1$ or m = 0, then

 $\exists C = C(m, d, K) > 0 \text{ s.t. } \forall N \geq 2 \text{ and } \forall e > 0 \text{ , } \lambda(N, e) \geq e^m \frac{C}{N^2}$

For 0 < m < 1, we can reduce the problem to that of a specific simple process of the long-range version. Moreover, we have an simple sufficient criterion for the same result.

Sketch of the proof

- Reduction of the problem to a specific simple process (Averaging model)
- Comparison theorem for the Averaging model of the local version and that of the long-range version
 - Some techniques used in the study of SG for the multi-species exclusion process
- Uniform estimate of the spectral gap for the Averaging model of the long-range version with fixed average energy
 - Case 1 $m = 0 \Rightarrow$ Caputo's method (ALEA, 2009) and some computation
 - <u>Case 2</u> $m \ge 1 \Rightarrow x^m$:convex \Rightarrow Comparison with Case 1
 - <u>Case 3</u> 0 < m < 1 ⇒ not proved but a simple sufficient criterion is obtained (Extension of Caputo's method & Comparison with Case 2)

This strategy can be applied for a wide class of models having a product reversible measure !