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1. Introduction: 1D surface growth

Paper combustion, bacteria colony, crystal

growth, liquid crystal turbulence
Non-equilibrium statistical mechanics
Stochastic interacting particle systems

Integrable systems
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Kardar-Parisi-Zhang(KPZ) equation

Oth(x,t) = %A(awh(wat))2 + Vaih(wat) + \/En(mvt)

where 7 is the Gaussian noise with covariance

<77(wa t)ﬂ(w', t,)> — 5(33 o w,)é(t T t,)
e The Brownian motion is stationary.

e Dynamical RG analysis: h(x = 0,t) ~ vt + cttl/3

KPZ universality class

e Now revival: New analytic and experimental developments



A discrete model: ASEP as a surface growth model

ASEP(asymmetric simple exclusion process)
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Mapping to surface growth




Stationary measure

ASEP - .. Bernoulli measure: each site is independent and

occupied with prob. p (0 < p < 1). Current is p(1 — p).

p | P | P | P | P | P | P

-3 -2 -1 0 1 2 3

Surface growth - -+ Random walk height profile



Surface growth and 2 initial conditions besides stationary

Flat

Wedge /\/\/\/\

Step Alternating

Integrated current N (x,t) in ASEP < Height h(x,t) in surface
growth



Current distributions for ASEP with wedge initial conditions
(TASEP) (ASEP)

N(0,t/(qg — p)) ~ 5t — 27 */3¢ 3¢y

Here N(x = 0,t) is the integrated current of ASEP at the origin
and &tw obeys the GUE Tracy-Widom distributions;

Frw(s) = Plérw < s|] =det(1 — PsKAiPs)os

0.4:
0.3}

where K a; is the Airy kernel ol
0.1r
Kai(x,y) = / dAAi(z + A)Ai(y + X) "
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Current Fluctuations of ASEP with flat initial conditions: GOE
TW distribution

More generalizations: stationary case: Fy distribution, multi-point

fluctuations, etc
They can be measured experimentally!

The KPZ equation itself can be treated analytically!



Random matrix theory

GUE (Gaussian Unitary Ensemble) hermitian matrices

U711 U2 + 112 - UIN + UIN
U2 — 1V12 U2 cee UN + V2N
A =
UIN — TUIN UaN — TU2N  **° UNN

ujj ~ N(0,1/2) wjr,vjr ~ N(0,1/4)
The largest eigenvalue ©max +++ GUE TW distribution

GOE (Gaussian Orthogonal Ensemble) real symmetric matrices
-+« GOE TW distribution



Experiments by liquid crystal turbulence

2010-2011 Takeuchi Sano
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Figure 2 | Family-Vicsek scaling. a,b, Interface width w{l, r) against the length scale [ at different times t for the circular (a) and flat (b} interfaces.
The four data correspond, from bottom to top, to t = 2.0 5,4.0 s, 12.0 sand 30.0 s for the panel aand to t = 4.0 5, 10.0 5, 25.0 sand 60.0 s for the panel b.

The insets show the same data with the rescaled axes. ¢, Growth of the overall width W(t) =4/ { [h{x.t) — {h)lz} The dashed lines are guides for the eyes
showing the exponent values of the KPZ class.

10



=

amplitude ratios

rescaled height %
C 10" - d

<
oy ~= Slope-173 17
-
-

\-\
-

. L 06

GOE

n

(x

X,

-0.2
0 20 40 60 80

i(s) t(s)

Figure 3 | Universal luctuations. a, Histogram of the rescaled local height 3 = [ — 2.0/ (T The blue and red salid symbaols show the histograms for
the circular interfaces at t = 10 s and 30 s; the light Blue and purple open symbols are for the flat interfaces at ¢ = 20 s and 80 s, respectively. The dashed
and dotted curves show the GUE and GOE TW distributions, respectively. MNote that for the GOE TW distribution y is multiplied by 27" in view of
the theoretical prediction™. b, The skewness (cirele) and the kurtosis (cross) of the distribution of the interface fluctustions for the ciscular {blue) and flat
[red) interfaces. The dashed and dotted lines indicate the values of the skewness and the kostasis of the GUE and COE TW distributions". ¢, d, Differences
in the cumulants between the experimental data {x%). and the corresponding TW distributions {xf,z ), for the ciroclar interfaces (¢} and {pfoe )

for the flat interfaces [d). The insets show the sarme data for 2 = 1 in logarithmic scales, The dashed lines are guides for the eyes with the slope —1/3,

See Takeuchi Sano Sasamoto Spohn, Sci. Rep. 1,34(2011)
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The narrow wedge KPZ equation

e Narrow wedge initial condition

e Based on (i) the fact that the weakly ASEP is KPZ equation
( ) and (ii) a formula for step ASEP by

e The explicit distribution function for finite ¢

e The KPZ equation is in the KPZ universality class

Before this

The 1/3 exponent for the stationary case

12



Narrow wedge initial condition

Scalings A
r — o’x, t— 2va*t, h— 2—h
v
where o = (2v)~3/2AD1/2.
We can and will do set v = %,)\ =D =1.

We consider the droplet growth with macroscopic shape

.

—x2 /2t for |x¢| < t/6,

h(x,t) = <
\(1/252)15 — |x|/d for |x| >t/

which corresponds to taking the following narrow wedge initial

conditions: h(x,0) = —|z|/d, 61

13



4 h(x.t)
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Distribution

h(x,t) = —x?/2t — 1—12’)’5’ + Ye&i
where ~v; = (2t)~1/3.

The distribution function of &;

& @)

Fi(s) =Pl& < s] =1 — /_ exp | — e'ﬁ(s_“)]

X(det(l — P, (Bt — Pa;)P,) — det(1 — PuBtPu))du

where Pai(x,y) = Ai(x)Ai(y) .
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P, is the projection onto [u, c0) and the kernel By is

Bi(z,y) = Kai(m,y) + / dA(e™> — 1)1
0

x (Ai(z 4+ A)Ai(y + A) — Ai(z — M) Ai(y — N)).
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Developments (not all!)

Replica
Half-BM by step Bernoulli ASEP

A directed polymer model related to quantum

Toda lattice
Multi-point distributions by replica
Flat case by replica
Tropical RSK for inverse gamma polymer
Macdonald process
Half-BM and stationary case by
replica

17



Replica analysis of KPZ equation

e Rederivation of the narrow wedge distribution by

Arrives at the correct formula by way of a divergent sum.

Now there is a rigorous version for a discrete model.
e |n a sense simpler than through ASEP

e Suited for generaliations

Multipoint distributions ( ), Flat case
( ), Half-BM (
), Stationary case ( ).

18



2. Stationary case

Two sided BM

.
B_(—ZB), x <0,

h(x,0) =
\B_|_(£U), x > 0,

where B4 (x) are two independent standard BMs

We consider a generalized initial condition

( ~
B(— _x, 0,
h(z,0) = (-z) + vz, =<

\B(:L') — vy, x > 0,

where B(x), B(x) are independent standard BMs and v are
the strength of the drifts.

19



Result

For the generalized initial condition with v+
F,. t(s) := Prob [h(z,t) + v} /12 < 5]

—_ F(’U.|. _I_ ’U_) [1 /OO d —ert(s—u)
— — — ue
I'(vy +v— +~, "d/ds) —oo

Here v, (w) is expressed as a difference of two Fredholm

szl:,t(u’)

determinants,
Vo, t(u) = det (1 — P, (B} — P,)P,) —det (1 — P,B/P,),

where Ps represents the projection onto (s, 00),

. 1 _ 1
P,AI\;(glv 52) — A'F (619 79”—9”4—) A'F (527 77”4—7”—)
t t
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oo

1
B{(sla 52) — / dy ! Ai; (51 + v, 7’U—9’U—I—)

oo 1 —e Y Yt

T 1
XA'r fz—l—’y,—,’l)_|_,0_ 9

Yt

and

1 . .28 T (2b d
AL (a, b, c,d) = — / dzeiatiy L0z +d)

21 Jr I' (—ibz + ¢)
b

where I', | represents the contour from —oo to oo and, along the

way, passing below the pole at z = 2d/b.
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Height distribution for the stationary KPZ equation

1 oo
T'(1+~; 'd/ds) /-

where v ¢(u) is obtained from v, ;(u) by taking v+ — 0 limit.

Fo,t(S) =

0.4¢
03f
02f

0.1f

0.0k

Figure 1: Stationary height distributions for the KPZ equation for

v+ = 1 case. The solid curve is Fy.
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Stationary 2pt correlation function

C(z,t) = ((h(z,t) — <h’($7t)>)2>
g (y) = (20)72/3C ((20)*/%y, ¢)

20f V=1 - - -

0s5f

oob— o v TS -

Figure 2: Stationary 2pt correlation function g;’(y) for v+ = 1.

The solid curve is the corresponding quantity in the scaling limit
9" (y).
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Derivation

Cole-Hopf transformation

h(z,t) = log (Z(x,t))

Z(x,t) is the solution of the stochastic heat equation,

0Z(x,t) 108°Z(x,t)
ot 2 Ox?

and can be considered as directed polymer in random potential 7.

+ n(x,t)Z(x,t).

cf. Well-posedness of KPZ equation without Cole-Hopf
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Feynmann-Kac and Generating function

Feynmann-Kac expression for the partition function,
t
2(e,) = Ex (exp | [ n(bs),t = 5) ds| 2(0(2),0))
0

We consider the N'th replica partition function {Z (x,t)) and
compute their generating function G¢(s) defined as
> (—e_'VtS)N 2te

Gi(s) = ZN(0,t)) eV 12
NEZ:O T )

with ¢ = (/2)1/3.

25



0-Bose gas

Taking the Gaussian average over the noise i, one finds that the

replica partition function can be written as

(ZN (x,t))
N 0o xj(t)== I t N
= H/_ dyj/'(o): Dlz;j(r)] exp —/O dr | ;(
N | _ N
— Y b(zi(r) —a(7)) | | X <eXp (Z h(yk,0)>>
jAk=1 | k=1

= (z|e” "N ).
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H ; is the Hamiltonian of the d-Bose gas,

1N 2 1 Y
Hy=—-2) ——— 5 0@ — =),
j=1 9%; ik

|®) represents the state corresponding to the initial condition. We
compute (ZN (x,t)) by expanding in terms of the eigenstates of
Hpy,

(Z(z,)N) = ) (@|T:)(V.|@)e P

where E, and |W,) are the eigenvalue and the eigenfunction of
HNZ HNl\Ifz> = Ezl\Ilz>.
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The state |®) can be calculated because the initial condition is
Gaussian. For the region where

1 <...<<0<x11<...<2N, 1 SIS Nitis
given by

(T1,+++ ,ZzN|P) = e~ Yj=1 @i —v+ jli4 @

l N-—1
> H e%(zl—zj+1)mj H e%(N—l—zj-|-1)ml+j
71=1 71=1

We symmetrize wrt 1,...,TN.
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Bethe states
By the Bethe ansatz, the eigenfunction is given as

<w19"' 933N|\I'z> = C, Z sgnP
PeSn

X H (ZP(_’]) — Zp(k) T ZSgn(fBg — ka) exp < Z ZP(l)CW)

1<j<k<N

N momenta z; (1 < 3 < NN) are parametrized as

a—1

zj =q ——(na—|—1—2ra), for]—z'ng—l—'ra
B=1
(1<a< Mandl<7ry <ng). They are divided into M
groups where 1 < M < N and the ath group consists of ng

’s which shares the common real part q..

guasimomenta Z;
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1/2

1<j<k<N '7J
M M
1

N
Yo=Y nadd = oo Y (1~ na).

a=1

o, =  Haz17e I !
© N! |z; — zp — 2|2
1
2

Expanding the moment in terms of the Bethe states, we have

(ZN (, 1))
N a1t N oo o M dge, &
= MZ: M1 1} /_oo W (/_oo 1] on Z;) OS M mp,N

X e_Ezt<$|\Pz><\I’z|y17”’ 9yN><y19°°' 7yN|(I)>

The completeness of Bethe states was proved by
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We see

(I,|®) = N!C, Z sgn P H (z}';(j) — Zpw) t z)

PeSN 1<j<k<N
>< z< 1) H .
23 1(_ZZP +v_) —m?/2
N —1 1
X

N : y
m=1 Zj:N—m+1(_ZZ}ij —vy) +m?2/2
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Combinatorial identities

(1)
> senP || (wpy) — wpr) + if (5, k)
PeSN 1<j<k<N
= IN! H (’wj — ’wk)
1<j<k<N

32



2)For any complex numbers w; (1 < 7 < IN) and a,
J

> senP || (wpy) —wpw) + a)
PeSN 1<j<k<N

: 1

N
PRV
X ;}( 1) H ZTzl(wP(j) +v_) — m2a/2

m=1

N -1 1

N
m=1 Zj:N_m+1(ij —vy) + mPa/2

[ (o4 +v— = am) [T o5 cpen (w5 — wk)
[N _ i (W +v— — a/2) (W — vy + a/2)

X

A similar identity in the context of ASEP has not been found.
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Generating function

—e ’ytS)N

Gils) = 3 H(v+ +v_ —1) Z

N=01=1
M oo oo
a=1 Na=

dq e_'yf'"’jqz"‘g"? —nj(wjtwr)—2iq(w; —wk)
det /

C
(—zq Tu—+ (ng —2r))(iq + vy + - (n‘7 — 27))
\ r=1 )

where the contour is C' = R — 2c with ¢ taken large enough.
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This generating function itself is not a Fredholm determinant due
to the novel factor Hl]i1(”+ +v_ —1).

We consider a further generalized initial condition in which the
initial overall height x obeys a certain probability distribution.

h=h+x

where h is the original height for which h(0,0) = 0. The
random variable x is taken to be independent of h.

Moments <€Nl~z> _ <€Nh><6NX>.
We postulate that x is distributed as the inverse gamma
distribution with parameter vy 4+ v_, i.e., if 1/x obeys the

gamma distribution with the same parameter. Its Nth moment is
1/ Hl]\;l(m_ + v_ — 1) which compensates the extra factor.

35



Distributions

F(S) — ﬁ(s)v

k(Y g
where F'(s) = Prob[h(0,t) < ~;s],
F(s) = Prob[h(0,t) < ~¢s] and k is the Laplace transform of
the pdf of x. For the inverse gamma distribution,

k() = T'(v+ &)/T'(v), by which we get the formula for the
generating function.
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Summary

1D KPZ equation is now under revival.

Replica analysis is suitable for various generalizations.

For KPZ replica analysis could be made rigorous.

Explicit formulas for the stationary measure.

Height distribution and two point correlation function.

Generalization to ASEP? In Macdonald setting?
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