Ginibre point process and its Palm measures: absolute continuity and singularity

Tomoyuki SHIRAI ^{1 2}

Kyushu University

Dec. 7, 2011

¹Joint work with Hirofumi Osada (Kyushu University) ²"10th workshop on stochastic analysis on large scale interacting systems" at Kochi University, Dec. 5–7, 2011.

Tomoyuki SHIRAI (Kyushu University) Ginibre point process and its Palm measures

Dec. 7, 2011 1 / 26

2 Main results

④ Singularity

Ginibre matrix ensemble and complex eigenvalues

• \mathcal{M}_N : the space of $N \times N$ complex matrices $\cong \mathbb{C}^{N^2}$ $P_N(dX) = Z_N^{-1} \exp(-\mathrm{Tr} X^* X) dX$,

Ginibre matrix ensemble and complex eigenvalues

- \mathcal{M}_N : the space of $N \times N$ complex matrices $\cong \mathbb{C}^{N^2}$ $P_N(dX) = Z_N^{-1} \exp(-\mathrm{Tr} X^* X) dX$,
- or equivalently,

Random matrix whose entries are all i.i.d. standard complex Gaussian. It is called **Ginibre matrix ensemble** of size *N*.

Ginibre matrix ensemble and complex eigenvalues

- \mathcal{M}_N : the space of $N \times N$ complex matrices $\cong \mathbb{C}^{N^2}$ $P_N(dX) = Z_N^{-1} \exp(-\mathrm{Tr} X^* X) dX$,
- or equivalently,

Random matrix whose entries are all i.i.d. standard complex Gaussian. It is called **Ginibre matrix ensemble** of size *N*.

• Probability density of complex eigenvalues was computed by Ginibre(1965) as follows:

$$egin{aligned} p^{(N)}(z_1,\ldots,z_N) &= rac{1}{\prod_{k=1}^N k!} \prod_{1 \leq i < j \leq N} |z_i - z_j|^2 \ &= rac{1}{\prod_{k=1}^N k!} \det(z_i^{j-1})_{i,j=1}^N \end{aligned}$$

with respect to the standard complex Gaussian measure $\lambda^{\otimes N}(dz_1 \dots dz_N)$ with $\lambda(dz) = \pi^{-1} e^{-|z|^2} dz$.

Random complex eigenvalues

Figure: *N* = 100, 400, 900

Dec. 7, 2011 4 / 26

Random complex eigenvalues

Figure: *N* = 100, 400, 900

• Bai showed that $\frac{1}{N} \sum_{i=1}^{N} \delta_{z_i/\sqrt{N}} \xrightarrow{w} Uniform(D_1)$ almost surely

Dec. 7, 2011 4 / 26

Definition (Determinantal point process (DPP))

DPP is a point process having deteminantal correlation functions

$$\rho_n(z_1, z_2, \ldots, z_n) = \det(K(z_i, z_j)_{i,j=1}^n)$$

for some K(z, w) relative to a Radon measure $\lambda(dz) = g(z)dz$.

Definition (Determinantal point process (DPP))

DPP is a point process having deteminantal correlation functions

$$\rho_n(z_1, z_2, \ldots, z_n) = \det(K(z_i, z_j)_{i,j=1}^n)$$

for some K(z, w) relative to a Radon measure $\lambda(dz) = g(z)dz$.

 The N-particle Ginibre point process on C is rotation invariant DPP on C whose kernel relative to λ(dz) = π⁻¹e^{-|z|²}dz is given by

$$\mathcal{K}^{(N)}(z,w) = \sum_{k=0}^{N-1} \frac{(z\overline{w})^k}{k!}$$

Definition (Determinantal point process (DPP))

DPP is a point process having deteminantal correlation functions

$$\rho_n(z_1, z_2, \ldots, z_n) = \det(K(z_i, z_j)_{i,j=1}^n)$$

for some K(z, w) relative to a Radon measure $\lambda(dz) = g(z)dz$.

 The N-particle Ginibre point process on C is rotation invariant DPP on C whose kernel relative to λ(dz) = π⁻¹e^{-|z|²}dz is given by

$$K^{(N)}(z,w) = \sum_{k=0}^{N-1} \frac{(z\overline{w})^k}{k!} \stackrel{N \to \infty}{\to} e^{z\overline{w}} =: K(z,w)$$

Definition (Determinantal point process (DPP))

DPP is a point process having deteminantal correlation functions

$$\rho_n(z_1, z_2, \ldots, z_n) = \det(K(z_i, z_j)_{i,j=1}^n)$$

for some K(z, w) relative to a Radon measure $\lambda(dz) = g(z)dz$.

 The N-particle Ginibre point process on C is rotation invariant DPP on C whose kernel relative to λ(dz) = π⁻¹e^{-|z|²}dz is given by

$$\mathcal{K}^{(N)}(z,w) = \sum_{k=0}^{N-1} \frac{(z\overline{w})^k}{k!} \stackrel{N \to \infty}{\to} e^{z\overline{w}} =: \mathcal{K}(z,w)$$

Dec. 7, 2011

5 / 26

• When correlation functions converge uniformly on any compacts, corresponding point processes converge weakly to a limit.

 \bullet Ginibre point process on $\mathbb C$ is defined as DPP with a kernel

$$K(z,w) = e^{z\overline{w}}, \quad \lambda(dz) = \pi^{-1}e^{-|z|^2}dz$$

 \bullet Ginibre point process on $\mathbb C$ is defined as DPP with a kernel

$$K(z,w) = e^{z\overline{w}}, \quad \lambda(dz) = \pi^{-1}e^{-|z|^2}dz$$

In particular,

$$ho_1(z) = g(z)K(z,z) = \pi^{-1}$$

 $ho_2(z,w) \le
ho_1(z)
ho_1(w) \quad \cdots \text{ negative correlation}$

 \bullet Ginibre point process on $\mathbb C$ is defined as DPP with a kernel

$$K(z,w) = e^{z\overline{w}}, \quad \lambda(dz) = \pi^{-1}e^{-|z|^2}dz$$

In particular,

$$ho_1(z) = g(z)K(z,z) = \pi^{-1}$$

 $ho_2(z,w) \le
ho_1(z)
ho_1(w) \quad \cdots \text{ negative correlation}$

 \bullet Ginibre p.p. on $\mathbb C$ is invariant under translations and rotations.

Poisson and Ginibre

Figure: Poisson(left) and Ginibre(right)

Variance and large deviations for the number of points

- $\xi(D_r)$ is the number of points inside the disk of radius r.
- Variance
 - Poisson case:

$$Var(\xi(D_r)) = r^2$$

• Ginibre case:

$$Var(\xi(D_r)) \sim rac{r}{\sqrt{\pi}}$$

Variance and large deviations for the number of points

- $\xi(D_r)$ is the number of points inside the disk of radius r.
- Variance
 - Poisson case:

$$Var(\xi(D_r)) = r^2$$

• Ginibre case:

$$Var(\xi(D_r)) \sim rac{r}{\sqrt{\pi}}$$

2 Large deviations

• Poisson case:

$$P(r^{-2}\xi(D_r) \approx a) \sim \exp(-I(a)r^2)$$

• Ginibre case:

$$P(r^{-2}\xi(D_r) \approx a) \sim \exp(-J(a)r^4)$$

• Formal expression:

$$\mu = Z^{-1} \prod_{i < j} |z_i - z_j|^2 e^{-\sum_i |z_i|^2} \prod_{i=1}^{\infty} dz_i$$
$$= Z^{-1} \exp\left(-\sum_i |z_i|^2 + 2 \prod_{i < j} \log |z_i - z_j|\right) \prod_{i=1}^{\infty} dz_i$$

• Formal expression:

$$\mu = Z^{-1} \prod_{i < j} |z_i - z_j|^2 e^{-\sum_i |z_i|^2} \prod_{i=1}^{\infty} dz_i$$
$$= Z^{-1} \exp\left(-\sum_i |z_i|^2 + 2 \prod_{i < j} \log |z_i - z_j|\right) \prod_{i=1}^{\infty} dz_i$$

• 2-body potential $\Phi(z, w) = -2 \log |z - w|$ is not even bounded.

Palm measure

 We focus on the (reduced) Palm measure of a simple point process µ defined as follows: for a = (a₁, a₂,..., a_n) ∈ Rⁿ

$$\mu^{\mathbf{a}}(\cdot) := \mu(\cdot - \sum_{i=1}^{n} \delta_{\mathbf{a}_i} \mid \xi(\{\mathbf{a}_i\}) \ge 1, \forall i = 1, 2, \dots n)$$

Palm measure

 We focus on the (reduced) Palm measure of a simple point process µ defined as follows: for a = (a₁, a₂,..., a_n) ∈ Rⁿ

$$\mu^{\mathbf{a}}(\cdot) := \mu(\cdot - \sum_{i=1}^{n} \delta_{\mathbf{a}_i} \mid \xi(\{\mathbf{a}_i\}) \ge 1, \forall i = 1, 2, \dots n)$$

• For a Poisson point process Π, it is well-known that

$$\Pi^{a} = \Pi$$

Palm measure

 We focus on the (reduced) Palm measure of a simple point process µ defined as follows: for a = (a₁, a₂,..., a_n) ∈ Rⁿ

$$\mu^{\mathbf{a}}(\cdot) := \mu(\cdot - \sum_{i=1}^{n} \delta_{\mathbf{a}_i} \mid \xi(\{\mathbf{a}_i\}) \ge 1, \forall i = 1, 2, \dots n)$$

• For a Poisson point process Π , it is well-known that

• More generally, for a Gibbs measure (with nice potential U), it is well-known that

$$rac{d\mu^{f a}}{d\mu}(\xi)\propto e^{-U({f a}|\xi)}$$

Dec. 7, 2011

10 / 26

where $U(\mathbf{a}|\xi)$ is the energy from the other configuration ξ .

Ginibre point process and its Palm measure

• Palm measure of DPP is again a DPP and its kernel is given by

$$K^{\alpha}(z,w) = K(z,w) - \frac{K(z,\alpha)K(\alpha,w)}{K(\alpha,\alpha)}$$

Ginibre point process and its Palm measure

• Palm measure of DPP is again a DPP and its kernel is given by

$$K^{\alpha}(z,w) = K(z,w) - \frac{K(z,\alpha)K(\alpha,w)}{K(\alpha,\alpha)}$$

• For Ginibre point process $(K(z, w) = e^{z\overline{w}})$,

$$\mathcal{K}^0(z,w)=\mathcal{K}(z,w)-rac{\mathcal{K}(z,0)\mathcal{K}(0,w)}{\mathcal{K}(0,0)}=e^{z\overline{w}}-1$$

with respect to $\lambda(dz) = \pi^{-1}e^{-|z|^2}dz =: g(z)dz$.

Ginibre point process and its Palm measure

• Palm measure of DPP is again a DPP and its kernel is given by

$$K^{\alpha}(z,w) = K(z,w) - \frac{K(z,\alpha)K(\alpha,w)}{K(\alpha,\alpha)}$$

• For Ginibre point process $(K(z, w) = e^{z\overline{w}})$,

$${\mathcal K}^0(z,w)={\mathcal K}(z,w)-rac{{\mathcal K}(z,0){\mathcal K}(0,w)}{{\mathcal K}(0,0)}=e^{z\overline w}-1$$

with respect to $\lambda(dz) = \pi^{-1}e^{-|z|^2}dz =: g(z)dz$.

• In particular, the particle density under Palm measure is reduced to

$$ho_1^0(z) = g(z) K^0(z,z) = \pi^{-1} (1 - e^{-|z|^2}).$$

- Are Ginibre p.p. μ and its Palm measure $\mu^{\mathbf{a}}$ absolutely continuous?
- **2** Are Palm measures of Ginibre p.p. $\mu^{\mathbf{a}}$ and $\mu^{\mathbf{b}}$ absolutely continuous?
- Give a criterion for absolute continuity between general DPPs in terms of kernel K and base measure λ .

Theorem (A.V.Skorohod, Y.Takahashi)

Let Π_{λ} be a Poisson point process with intensity λ . Then, $\Pi_{\lambda} \sim \Pi_{\rho}$ are equivalent to the following:

(i) $\lambda \sim \rho$ (ii) Hellinger distance between λ and ρ is finite

$$d(\lambda,
ho)^2 = rac{1}{2}\int_R \left(\sqrt{rac{d
ho}{d\lambda}}-1
ight)^2 d\lambda < \infty$$

Moreover,

$$D(\Pi_\lambda,\Pi_
ho)^2:=rac{1}{2}\int_R\left(\sqrt{rac{d\Pi_
ho}{d\Pi_\lambda}}-1
ight)^2d\Pi_\lambda=1-e^{-d(\lambda,
ho)^2}$$

- μ : Ginibre point process on $\mathbb C$
- $\mu^{\mathbf{X}}$: the Palm measure of μ given that there are points at $\mathbf{x} \in \mathbb{C}^m$.

Theorem

Let $\mathbf{x} \in \mathbb{C}^m$ and $\mathbf{y} \in \mathbb{C}^n$, where m, n = 0, 1, 2, ... Then the following holds.

(i) If m = n, then $\mu^{\mathbf{X}}$ and $\mu^{\mathbf{y}}$ are mutually absolutely continuous. (ii) If $m \neq n$, then $\mu^{\mathbf{X}}$ and $\mu^{\mathbf{y}}$ are sigular each other.

- μ : Ginibre point process on $\mathbb C$
- $\mu^{\mathbf{X}}$: the Palm measure of μ given that there are points at $\mathbf{x} \in \mathbb{C}^m$.

Theorem

Let $\mathbf{x} \in \mathbb{C}^m$ and $\mathbf{y} \in \mathbb{C}^n$, where m, n = 0, 1, 2, ... Then the following holds.

(i) If m = n, then $\mu^{\mathbf{X}}$ and $\mu^{\mathbf{y}}$ are mutually absolutely continuous. (ii) If $m \neq n$, then $\mu^{\mathbf{X}}$ and $\mu^{\mathbf{y}}$ are sigular each other.

 When μ is Gibbs, μ^x << μ. So, we would say that Ginibre is not Gibbs in the ordinary sense. Osada introduced a weak notion of Gibbs measure, quasi-Gibbs property. • Consider the zeros of the (hyperbolic) Gaussian analytic function

$$X(z) = \sum_{n=0}^{\infty} \zeta_n z^n \quad \text{on } D_1$$

where $\zeta_n, n = 0, 1, 2, ...$ i.i.d. $N_{\mathbb{C}}(0, 1)$.

- Peres-Virág showed that zeros of X(z) form DPP associated with Bergman kernel $K(z, w) = \pi^{-1}(1 z\overline{w})^{-2}$ and Lebesgue measure on D_1 .
- Halroyd-Soo showed that the zero process μ_X and its Palm measure μ_X^0 are mutually absolutely continuous.

Theorem

For any $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$, two Palm measures $\mu^{\mathbf{x}}$ and $\mu^{\mathbf{y}}$ of the Ginibre point process are mutually absolutely continuous and its Radon-Nikodym density is given by

$$\frac{d\mu^{\mathbf{x}}}{d\mu^{\mathbf{y}}}(\xi) = \frac{1}{Z_{\mathbf{xy}}} \lim_{r \to \infty} \prod_{|z_i| < b_r} \frac{|\mathbf{x} - z_i|^2}{|\mathbf{y} - z_i|^2}$$
where $\xi = \sum_i \delta_{z_i}$, $|\mathbf{x} - z|^2 = \prod_{j=1}^n |x_j - z|^2$ and
$$Z_{\mathbf{xy}} = \frac{\det(K(x_i, x_j))_{i,j=1}^n}{\det(K(y_i, y_j))_{i,j=1}^n}$$

The infinite product of the RHS is conditionally convergent.

Radon-Nikodym density

For simplicity, $x \in \mathbb{C}$ and $\xi = \sum_i \delta_{z_i}$ • $\mu^x(z_1, \dots, z_n) \propto \prod_{i=1}^n |x - z_i|^2 \prod_{i < j} |z_i - z_j|^2 \exp(-\sum_{i=1}^n |z_i|^2)$

Radon-Nikodym density

For simplicity, $x \in \mathbb{C}$ and $\xi = \sum_i \delta_{z_i}$

• $\mu^{x}(z_{1},...,z_{n}) \propto \prod_{i=1}^{n} |x-z_{i}|^{2} \prod_{i < j} |z_{i} - z_{j}|^{2} \exp(-\sum_{i=1}^{n} |z_{i}|^{2})$

• Radon-Nikodym density is

$$\frac{\mu^{\mathsf{x}}(z_1,\ldots,z_n)}{\mu^{\mathsf{y}}(z_1,\ldots,z_n)} = \prod_{i=1}^n \frac{|\mathsf{x}-z_i|^2}{|\mathsf{y}-z_i|^2} = \prod_{i=1}^n \frac{|1-\mathsf{x}/z_i|^2}{|1-\mathsf{y}/z_i|^2} \to ?$$

Radon-Nikodym density

For simplicity, $x \in \mathbb{C}$ and $\xi = \sum_i \delta_{z_i}$

• $\mu^{x}(z_{1},...,z_{n}) \propto \prod_{i=1}^{n} |x-z_{i}|^{2} \prod_{i < j} |z_{i} - z_{j}|^{2} \exp(-\sum_{i=1}^{n} |z_{i}|^{2})$

• Radon-Nikodym density is

$$\frac{\mu^{x}(z_{1},\ldots,z_{n})}{\mu^{y}(z_{1},\ldots,z_{n})} = \prod_{i=1}^{n} \frac{|x-z_{i}|^{2}}{|y-z_{i}|^{2}} = \prod_{i=1}^{n} \frac{|1-x/z_{i}|^{2}}{|1-y/z_{i}|^{2}} \rightarrow ?$$

• The canonical infinite product (of order 2)

$$\prod_{i=1}^{\infty} (1 - \frac{x}{z_i}) \exp\left(\frac{x}{z_i} + \frac{x^2}{2z_i^2}\right)$$

is absolutely covergent, but $\prod_{i=1}^{\infty} (1 - \frac{x}{z_i})$ itself is not since the number of zeros $\xi(D_r)$ inside the disk D_r grows like r^2 .

• $\xi(D_r)$ is the number of points inside the disk of radius r.

Small fluctuation

- $\xi(D_r)$ is the number of points inside the disk of radius r.
- While $var(\xi(D_r)) = O(r^2)$ under Poisson p.p.,

 $\operatorname{var}(\xi(D_r)) = O(r)$ as $r \to \infty$

under Ginibre p.p.

Small fluctuation

- $\xi(D_r)$ is the number of points inside the disk of radius r.
- While $var(\xi(D_r)) = O(r^2)$ under Poisson p.p.,

$$\operatorname{var}(\xi(D_r)) = O(r)$$
 as $r \to \infty$

under Ginibre p.p.

• This small fluctuation property makes the series $\sum_{|z_i| < b_r} \frac{1}{z_i}$, $\sum_{|z_i| < b_r} \frac{1}{z_i^2}$ to be conditionally convergent, and hence $\prod_{i=1}^{\infty} (1 - \frac{x}{z_i})$ is conditinally convergent.

Small fluctuation

- $\xi(D_r)$ is the number of points inside the disk of radius r.
- While $var(\xi(D_r)) = O(r^2)$ under Poisson p.p.,

$$\operatorname{var}(\xi(D_r)) = O(r)$$
 as $r \to \infty$

under Ginibre p.p.

- This small fluctuation property makes the series $\sum_{|z_i| < b_r} \frac{1}{z_i}$, $\sum_{|z_i| < b_r} \frac{1}{z_i^2}$ to be conditionally convergent, and hence $\prod_{i=1}^{\infty} (1 \frac{x}{z_i})$ is conditinally convergent.
- The situation is similar to

$$\frac{\sin \pi z}{\pi z} = \prod_{i \in \mathbb{Z} \setminus \{0\}} (1 - \frac{z}{i}) = \prod_{i=1}^{\infty} (1 - \frac{z}{i})(1 - \frac{z}{-i}) = \prod_{i=1}^{\infty} (1 - \frac{z^2}{i^2})$$

- Katori-Tanemura and Osada independently (by using different techniques) constructed diffusion processes of ∞-particles invariant under some DPPs on ℝ.
- Osada also constructed a diffusion process invariant under Ginibre point process. It is formally given as ∞-dimensional SDE

$$dX_{t}^{i} = dB_{t}^{i} - X_{t}^{i} + \lim_{r \to \infty} \sum_{|X_{t}^{i}| < r, j \neq i} \frac{X_{t}^{i} - X_{t}^{j}}{|X_{t}^{i} - X_{t}^{j}|^{2}} dt$$

Y₁, Y₂,... are indepedent and Y_i ~ Γ(i, 1), the sum of i exponential random variables with mean 1.

$$\{|z_1|^2,|z_2|^2,\dots\}\stackrel{d}{=}\{Y_1,Y_2,\dots\}$$
 as a set

where $\xi = \sum_{i} \delta_{z_i}$ is a Ginibre point configuration.

Y₁, Y₂,... are indepedent and Y_i ~ Γ(i, 1), the sum of i exponential random variables with mean 1.

$$\{|z_1|^2,|z_2|^2,\dots\}\stackrel{d}{=}\{Y_1,Y_2,\dots\}$$
 as a set

where $\xi = \sum_{i} \delta_{z_i}$ is a Ginibre point configuration.

• Under the Palm measure conditioned at the origin, we see that

$$\{|z_1|^2, |z_2|^2, \dots\} \stackrel{d}{=} \{Y_2, Y_3, \dots\}$$
 as a set

Y₁, Y₂,... are indepedent and Y_i ~ Γ(i, 1), the sum of i exponential random variables with mean 1.

$$\{|z_1|^2,|z_2|^2,\dots\}\stackrel{d}{=}\{Y_1,Y_2,\dots\}$$
 as a set

where $\xi = \sum_{i} \delta_{z_i}$ is a Ginibre point configuration.

• Under the Palm measure conditioned at the origin, we see that

$$\{|z_1|^2, |z_2|^2, \dots\} \stackrel{d}{=} \{Y_2, Y_3, \dots\}$$
 as a set

 Kakutani's dichotomy for two independent infinite sequences of probability measures *M* = (μ₁, μ₂,...), and *N* = (ν₁, ν₂,...),

$$\prod_{i=1}^{\infty}\int_{\mathbb{R}}\sqrt{\mu_i(t)\nu_i(t)}dt>0 \,\, \text{or} \,\, =0 \Longleftrightarrow \mathcal{M}\sim \mathcal{N} \,\, \text{or} \,\, \mathcal{M}\perp \mathcal{N}$$

Y₁, Y₂,... are indepedent and Y_i ~ Γ(i, 1), the sum of i exponential random variables with mean 1.

$$\{|z_1|^2,|z_2|^2,\dots\}\stackrel{d}{=}\{Y_1,Y_2,\dots\}$$
 as a set

where $\xi = \sum_{i} \delta_{z_i}$ is a Ginibre point configuration.

• Under the Palm measure conditioned at the origin, we see that

$$\{|z_1|^2, |z_2|^2, \dots\} \stackrel{d}{=} \{Y_2, Y_3, \dots\}$$
 as a set

 Kakutani's dichotomy for two independent infinite sequences of probability measures *M* = (μ₁, μ₂,...), and *N* = (ν₁, ν₂,...),

$$\prod_{i=1}^{\infty}\int_{\mathbb{R}}\sqrt{\mu_{i}(t)\nu_{i}(t)}dt>0 \,\, \text{or} \,\, =0 \Longleftrightarrow \mathcal{M}\sim \mathcal{N} \,\, \text{or} \,\, \mathcal{M}\perp \mathcal{N}$$

• By some calculation, we see that, $(Y_1, Y_2, \ldots) \perp (Y_2, Y_3, \ldots)$.

The zeros of Gaussian analytic function

• GAF
$$X(z) = \sum_{n=0}^{\infty} \zeta_n z^n$$
, where $\zeta_n \sim N_{\mathbb{C}}(0,1)$
• Y_1, Y_2, \ldots are indepedent and $Y_i \sim U_i^{1/2i}$.

$$\{|z_1|^2, |z_2|^2, \dots\} \stackrel{d}{=} \{Y_1, Y_2, \dots\}$$
 as a set

where $\xi = \sum_{i} \delta_{z_i}$ is the zeros of the above GAF X.

Under the Palm measure conditioned at the origin, we see that

$$\{|z_1|^2, |z_2|^2, \dots\} \stackrel{d}{=} \{Y_2, Y_3, \dots\}$$
 as a set

By some calculation, we see that

$$(Y_1, Y_2, \dots) \sim (Y_2, Y_3, \dots).$$

• Image measures inherit absolute continuity but not necessarily singluarity.

- Image measures inherit absolute continuity but not necessarily singluarity.
- Our situation is like this.
 The RHSs have the same distribution by Kostlan's theorem.

$$\prod_{i=1}^{\infty} \mathbb{C} \ni (Y_1, Y_2, \dots) \mapsto \sum_{i=1}^{\infty} \delta_{Y_i} \in Conf([0, \infty))$$
$$Conf(\mathbb{C}) \ni \sum_{i=1}^{\infty} \delta_{z_i} \mapsto \sum_{i=1}^{\infty} \delta_{|z_i|^2} \in Conf([0, \infty))$$

Idea of the proof for singularity (1)

• Define a function on the configuration space

$$\mathcal{F}_{\mathcal{N}}(\xi):=rac{1}{\mathcal{N}}\sum_{k=1}^{\mathcal{N}}(\xi(D_k)-k) \quad ext{for } \xi=\sum_i \delta_{z_i}$$

where $\xi(D_k)$ is the number of point inside the disk D_k of radius \sqrt{k} .

Idea of the proof for singularity (1)

• Define a function on the configuration space

$$\mathcal{F}_{\mathcal{N}}(\xi) := rac{1}{\mathcal{N}} \sum_{k=1}^{\mathcal{N}} (\xi(D_k) - k) \quad ext{for } \xi = \sum_i \delta_{z_i}$$

where $\xi(D_k)$ is the number of point inside the disk D_k of radius \sqrt{k} . • Since $\xi(D_k), k = 1, 2, ..., n$ are correlated,

$$\operatorname{var}(F_N) = O(N)$$

under Poisson p.p. Π.

Idea of the proof for singularity (1)

• Define a function on the configuration space

$$\mathcal{F}_{\mathcal{N}}(\xi) := rac{1}{\mathcal{N}} \sum_{k=1}^{\mathcal{N}} (\xi(D_k) - k) \quad ext{for } \xi = \sum_i \delta_{z_i}$$

where $\xi(D_k)$ is the number of point inside the disk D_k of radius \sqrt{k} . • Since $\xi(D_k), k = 1, 2, ..., n$ are correlated,

$$\operatorname{var}(F_N) = O(N)$$

under Poisson p.p. П.

Proposition

Under Ginibre p.p. and its Palm measures,

$$\operatorname{var}(F_N) = O(1)$$

by negative correlation.

Idea of the proof for singularity (2)

•
$$F_N(\xi) := \frac{1}{N} \sum_{k=1}^{N} (\xi(D_k) - k)$$
 for $\xi = \sum_i \delta_{z_i}$

Theorem

For $m \in \mathbb{N}$ and $\mathbf{0}_m = (0, 0, \dots, 0) \in \mathbb{C}^m$, then

$$\lim_{N\to\infty} F_N(\xi) = -m, \quad \text{weakly in } L^2(\mu^{\mathbf{0}_m})$$

Idea of the proof for singularity (2)

•
$$F_N(\xi) := \frac{1}{N} \sum_{k=1}^{N} (\xi(D_k) - k)$$
 for $\xi = \sum_i \delta_{z_i}$

Theorem

For
$$m \in \mathbb{N}$$
 and $\mathbf{0}_m = (0, 0, \dots, 0) \in \mathbb{C}^m$, then

$$\lim_{N\to\infty}F_N(\xi)=-m,\quad \text{weakly in }L^2(\mu^{\mathbf{0}_m})$$

• From this theorem, we see that for $\mathbf{0}_n \in \mathbb{C}^n$ and $\mathbf{0}_m \in \mathbb{C}^m$ with $n \neq m, \ \mu \mathbf{0}_n$ and $\mu \mathbf{0}_m$ are mutually singular, $\mu \mathbf{0}_n \perp \mu \mathbf{0}_m$.

Idea of the proof for singularity (2)

•
$$F_N(\xi) := \frac{1}{N} \sum_{k=1}^{N} (\xi(D_k) - k)$$
 for $\xi = \sum_i \delta_{z_i}$

Theorem

For
$$m \in \mathbb{N}$$
 and $\mathbf{0}_m = (0, 0, \dots, 0) \in \mathbb{C}^m$, then

$$\lim_{N\to\infty} F_N(\xi) = -m, \quad \text{weakly in } L^2(\mu^{\mathbf{0}_m})$$

• From this theorem, we see that for $\mathbf{0}_n \in \mathbb{C}^n$ and $\mathbf{0}_m \in \mathbb{C}^m$ with $n \neq m, \ \mu \mathbf{0}_n$ and $\mu \mathbf{0}_m$ are mutually singular, $\mu \mathbf{0}_n \perp \mu \mathbf{0}_m$.

• For general $\mathbf{a} \in \mathbb{C}^n$ and $\mathbf{b} \in \mathbb{C}^m$,

$$\mu^{\mathbf{a}} \sim \mu^{\mathbf{0}_n} \perp \mu^{\mathbf{0}_m} \sim \mu^{\mathbf{b}}$$

Concluding remarks and open questions

- Absolute continuity for general DPP. Can we give a criterion for absolute continuity in terms of K(z, w) and λ(dz)? More concretely, radially symmetric DPP on C may be next target, for example.
- Is it true that singularity are inherited via two mappings:

$$\prod_{i=1}^{\infty} \mathbb{C} \ni (Y_1, Y_2, \dots) \mapsto \sum_{i=1}^{\infty} \delta_{Y_i} \in Conf([0, \infty))$$
$$Conf(\mathbb{C}) \ni \sum_{i=1}^{\infty} \delta_{z_i} \mapsto \sum_{i=1}^{\infty} \delta_{|z_i|^2} \in Conf([0, \infty))$$

Point processes on C defines probability measures on entire functions by Hadamard product. How does a point process affect random entire function? Can we say something about absolute continuity from properties of random entire functions obtained from point processes?

舟木さん,: 還暦おめでとうございます.

Tomoyuki SHIRAI (Kyushu University) Ginibre point process and its Palm measures