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. . . . . .

Ginibre matrix ensemble and complex eigenvalues

MN : the space of N × N complex matrices ∼= CN2

PN(dX ) = Z−1
N exp(−TrX ∗X )dX ,

or equivalently,
Random matrix whose entries are all i.i.d. standard complex Gaussian.
It is called Ginibre matrix ensemble of size N.

Probability density of complex eigenvalues was computed by
Ginibre(1965) as follows:

p(N)(z1, . . . , zN) =
1∏N

k=1 k!

∏
1≤i<j≤N

|zi − zj |2

=
1∏N

k=1 k!
det(z j−1

i )Ni ,j=1

with respect to the standard complex Gaussian measure
λ⊗N(dz1 . . . dzN) with λ(dz) = π−1e−|z|2dz .
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Random complex eigenvalues
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Figure: N = 100, 400, 900

Bai showed that 1
N

∑N
i=1 δzi/

√
N

w→ Uniform(D1) almost surely
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. . . . . .

Ginibre point process as determinantal point process

.
Definition (Determinantal point process (DPP))
..

.

. ..

.

.

DPP is a point process having deteminantal correlation functions

ρn(z1, z2, . . . , zn) = det(K (zi , zj)
n
i ,j=1)

for some K (z ,w) relative to a Radon measure λ(dz) = g(z)dz.

The N-particle Ginibre point process on C is rotation invariant DPP
on C whose kernel relative to λ(dz) = π−1e−|z|2dz is given by

K (N)(z ,w) =
N−1∑
k=0

(zw)k

k!
N→∞→ ezw =: K (z ,w)

When correlation functions converge uniformly on any compacts,
corresponding point processes converge weakly to a limit.
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. . . . . .

Ginibre point process

Ginibre point process on C is defined as DPP with a kernel

K (z ,w) = ezw , λ(dz) = π−1e−|z|2dz

In particular,

ρ1(z) = g(z)K (z , z) = π−1

ρ2(z ,w) ≤ ρ1(z)ρ1(w) · · · negative correlation

Ginibre p.p. on C is invariant under translations and rotations.
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Poisson and Ginibre
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Figure: Poisson(left) and Ginibre(right)
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Variance and large deviations for the number of points

ξ(Dr ) is the number of points inside the disk of radius r .

...1 Variance

Poisson case:
Var(ξ(Dr )) = r2

Ginibre case:
Var(ξ(Dr )) ∼

r√
π

...2 Large deviations

Poisson case:
P(r−2ξ(Dr ) ≈ a) ∼ exp(−I (a)r2)

Ginibre case:
P(r−2ξ(Dr ) ≈ a) ∼ exp(−J(a)r4)
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. . . . . .

Ginibre point process is considered as a Gibbs measure?

Formal expression:

µ = Z−1
∏
i<j

|zi − zj |2e−
∑

i |zi |2
∞∏
i=1

dzi

= Z−1 exp

−
∑
i

|zi |2 + 2
∏
i<j

log |zi − zj |

 ∞∏
i=1

dzi

2-body potential Φ(z ,w) = −2 log |z − w | is not even bounded.
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. . . . . .

Palm measure

We focus on the (reduced) Palm measure of a simple point process µ
defined as follows: for a = (a1, a2, . . . , an) ∈ Rn

µa(·) := µ(· −
n∑

i=1

δai | ξ({ai}) ≥ 1,∀i = 1, 2, . . . n)

For a Poisson point process Π, it is well-known that

Πa = Π

More generally, for a Gibbs measure (with nice potential U), it is
well-known that

dµa

dµ
(ξ) ∝ e−U(a|ξ)

where U(a|ξ) is the energy from the other configuration ξ.
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. . . . . .

Ginibre point process and its Palm measure

Palm measure of DPP is again a DPP and its kernel is given by

Kα(z ,w) = K (z ,w)− K (z , α)K (α,w)

K (α, α)

For Ginibre point process (K (z ,w) = ezw ),

K 0(z ,w) = K (z ,w)− K (z , 0)K (0,w)

K (0, 0)
= ezw − 1

with respect to λ(dz) = π−1e−|z|2dz =: g(z)dz .

In particular, the particle density under Palm measure is reduced to

ρ01(z) = g(z)K 0(z , z) = π−1(1− e−|z|2).
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. . . . . .

Questions

...1 Are Ginibre p.p. µ and its Palm measure µa absolutely continuous?

...2 Are Palm measures of Ginibre p.p. µa and µb absolutely continuous?

...3 Give a criterion for absolute continuity between general DPPs in
terms of kernel K and base measure λ.
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Absolute continuity for Poisson p.p

.
Theorem (A.V.Skorohod, Y.Takahashi)
..

.

. ..

.

.

Let Πλ be a Poisson point process with intensity λ. Then, Πλ ∼ Πρ are
equivalent to the following:
(i) λ ∼ ρ
(ii) Hellinger distance between λ and ρ is finite

d(λ, ρ)2 =
1

2

∫
R

(√
dρ

dλ
− 1

)2

dλ < ∞

Moreover,

D(Πλ,Πρ)
2 :=

1

2

∫
R

(√
dΠρ

dΠλ
− 1

)2

dΠλ = 1− e−d(λ,ρ)2
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. . . . . .

Main results

µ : Ginibre point process on C
µx : the Palm measure of µ given that there are points at x ∈ Cm.

.
Theorem
..

.

. ..

.

.

Let x ∈ Cm and y ∈ Cn, where m, n = 0, 1, 2, . . . . Then the following
holds.

(i) If m = n, then µx and µy are mutually absolutely continuous.

(ii) If m ̸= n, then µx and µy are sigular each other.

When µ is Gibbs, µx << µ. So, we would say that Ginibre is not
Gibbs in the ordinary sense. Osada introduced a weak notion of Gibbs
measure, quasi-Gibbs property.
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. . . . . .

Related results

Consider the zeros of the (hyperbolic) Gaussian analytic function

X (z) =
∞∑
n=0

ζnz
n on D1

where ζn, n = 0, 1, 2, . . . i.i.d. NC(0, 1).

Peres-Virág showed that zeros of X (z) form DPP associated with
Bergman kernel K (z ,w) = π−1(1− zw)−2 and Lebesgue measure on
D1.

Halroyd-Soo showed that the zero process µX and its Palm measure
µ0
X are mutually absolutely continuous.
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. . . . . .

Absolute continuity

.
Theorem
..

.

. ..

.

.

For any x, y ∈ Cn, two Palm measures µx and µy of the Ginibre point
process are mutually absolutely continuous and its Radon-Nikodym density
is given by

dµx

dµy
(ξ) =

1

Zxy
lim
r→∞

∏
|zi |<br

|x− zi |2

|y − zi |2

where ξ =
∑

i δzi , |x− z |2 =
∏n

j=1 |xj − z |2 and

Zxy =
det(K (xi , xj))

n
i ,j=1

det(K (yi , yj))ni ,j=1

The infinite product of the RHS is conditionally convergent.
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. . . . . .

Radon-Nikodym density

For simplicity, x ∈ C and ξ =
∑

i δzi
µx(z1, . . . , zn) ∝

∏n
i=1 |x − zi |2

∏
i<j |zi − zj |2 exp(−

∑n
i=1 |zi |2)

Radon-Nikodym density is

µx(z1, . . . , zn)

µy (z1, . . . , zn)
=

n∏
i=1

|x − zi |2

|y − zi |2
=

n∏
i=1

|1− x/zi |2

|1− y/zi |2
→?

The canonical infinite product (of order 2)

∞∏
i=1

(1− x

zi
) exp

(
x

zi
+

x2

2z2i

)
is absolutely covergent, but

∏∞
i=1(1−

x
zi
) itself is not since the

number of zeros ξ(Dr ) inside the disk Dr grows like r2.
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. . . . . .

Small fluctuation

ξ(Dr ) is the number of points inside the disk of radius r .

While var(ξ(Dr )) = O(r2) under Poisson p.p.,

var(ξ(Dr )) = O(r) as r → ∞

under Ginibre p.p.

This small fluctuation property makes the series
∑

|zi |<br

1

zi
,

∑
|zi |<br

1

z2i

to be conditionally convergent, and hence
∏∞

i=1(1−
x
zi
) is conditinally

convergent.

The situation is similar to

sinπz

πz
=

∏
i∈Z\{0}

(1− z

i
) =

∞∏
i=1

(1− z

i
)(1− z

−i
) =

∞∏
i=1

(1− z2

i2
)
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(1− z

i
) =

∞∏
i=1

(1− z

i
)(1− z

−i
) =

∞∏
i=1

(1− z2

i2
)
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. . . . . .

Interacting Brownian Motion under Ginibre p.p.

Katori-Tanemura and Osada independently (by using different
techniques) constructed diffusion processes of ∞-particles invariant
under some DPPs on R.
Osada also constructed a diffusion process invariant under Ginibre
point process. It is formally given as ∞-dimensional SDE

dX i
t = dB i

t − X i
t + lim

r→∞

∑
|X i

t |<r ,j ̸=i

X i
t − X j

t

|X i
t − X j

t |2
dt
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. . . . . .

For singularity: Kostlan’s theorem

Y1,Y2, . . . are indepedent and Yi ∼ Γ(i , 1), the sum of i exponential
random variables with mean 1.

{|z1|2, |z2|2, . . . }
d
= {Y1,Y2, . . . } as a set

where ξ =
∑

i δzi is a Ginibre point configuration.

Under the Palm measure conditioned at the origin, we see that

{|z1|2, |z2|2, . . . }
d
= {Y2,Y3, . . . } as a set

Kakutani’s dichotomy for two independent infinite sequences of
probability measures M = (µ1, µ2, . . . ), and N = (ν1, ν2, . . . ),

∞∏
i=1

∫
R

√
µi (t)νi (t)dt > 0 or = 0 ⇐⇒ M ∼ N or M ⊥ N

By some calculation, we see that, (Y1,Y2, . . . ) ⊥ (Y2,Y3, . . . ).

Tomoyuki SHIRAI (Kyushu University) Ginibre point process and its Palm measures Dec. 7, 2011 20 / 26



. . . . . .

For singularity: Kostlan’s theorem

Y1,Y2, . . . are indepedent and Yi ∼ Γ(i , 1), the sum of i exponential
random variables with mean 1.

{|z1|2, |z2|2, . . . }
d
= {Y1,Y2, . . . } as a set

where ξ =
∑

i δzi is a Ginibre point configuration.

Under the Palm measure conditioned at the origin, we see that

{|z1|2, |z2|2, . . . }
d
= {Y2,Y3, . . . } as a set

Kakutani’s dichotomy for two independent infinite sequences of
probability measures M = (µ1, µ2, . . . ), and N = (ν1, ν2, . . . ),

∞∏
i=1

∫
R

√
µi (t)νi (t)dt > 0 or = 0 ⇐⇒ M ∼ N or M ⊥ N

By some calculation, we see that, (Y1,Y2, . . . ) ⊥ (Y2,Y3, . . . ).

Tomoyuki SHIRAI (Kyushu University) Ginibre point process and its Palm measures Dec. 7, 2011 20 / 26



. . . . . .

For singularity: Kostlan’s theorem

Y1,Y2, . . . are indepedent and Yi ∼ Γ(i , 1), the sum of i exponential
random variables with mean 1.

{|z1|2, |z2|2, . . . }
d
= {Y1,Y2, . . . } as a set

where ξ =
∑

i δzi is a Ginibre point configuration.

Under the Palm measure conditioned at the origin, we see that

{|z1|2, |z2|2, . . . }
d
= {Y2,Y3, . . . } as a set

Kakutani’s dichotomy for two independent infinite sequences of
probability measures M = (µ1, µ2, . . . ), and N = (ν1, ν2, . . . ),

∞∏
i=1

∫
R

√
µi (t)νi (t)dt > 0 or = 0 ⇐⇒ M ∼ N or M ⊥ N

By some calculation, we see that, (Y1,Y2, . . . ) ⊥ (Y2,Y3, . . . ).

Tomoyuki SHIRAI (Kyushu University) Ginibre point process and its Palm measures Dec. 7, 2011 20 / 26



. . . . . .

For singularity: Kostlan’s theorem

Y1,Y2, . . . are indepedent and Yi ∼ Γ(i , 1), the sum of i exponential
random variables with mean 1.

{|z1|2, |z2|2, . . . }
d
= {Y1,Y2, . . . } as a set

where ξ =
∑

i δzi is a Ginibre point configuration.

Under the Palm measure conditioned at the origin, we see that

{|z1|2, |z2|2, . . . }
d
= {Y2,Y3, . . . } as a set

Kakutani’s dichotomy for two independent infinite sequences of
probability measures M = (µ1, µ2, . . . ), and N = (ν1, ν2, . . . ),

∞∏
i=1

∫
R

√
µi (t)νi (t)dt > 0 or = 0 ⇐⇒ M ∼ N or M ⊥ N

By some calculation, we see that, (Y1,Y2, . . . ) ⊥ (Y2,Y3, . . . ).

Tomoyuki SHIRAI (Kyushu University) Ginibre point process and its Palm measures Dec. 7, 2011 20 / 26



. . . . . .

The zeros of Gaussian analytic function

GAF X (z) =
∑∞

n=0 ζnz
n, where ζn ∼ NC(0, 1)

Y1,Y2, . . . are indepedent and Yi ∼ U
1/2i
i .

{|z1|2, |z2|2, . . . }
d
= {Y1,Y2, . . . } as a set

where ξ =
∑

i δzi is the zeros of the above GAF X .

Under the Palm measure conditioned at the origin, we see that

{|z1|2, |z2|2, . . . }
d
= {Y2,Y3, . . . } as a set

By some calculation, we see that

(Y1,Y2, . . . ) ∼ (Y2,Y3, . . . ).
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. . . . . .

Image measures

Image measures inherit absolute continuity but not necessarily
singluarity.

Our situation is like this.
The RHSs have the same distribution by Kostlan’s theorem.

∞∏
i=1

C ∋ (Y1,Y2, . . . ) 7→
∞∑
i=1

δYi
∈ Conf ([0,∞))

Conf (C) ∋
∞∑
i=1

δzi 7→
∞∑
i=1

δ|zi |2 ∈ Conf ([0,∞))
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. . . . . .

Idea of the proof for singularity (1)

Define a function on the configuration space

FN(ξ) :=
1

N

N∑
k=1

(ξ(Dk)− k) for ξ =
∑
i

δzi

where ξ(Dk) is the number of point inside the disk Dk of radius
√
k.

Since ξ(Dk), k = 1, 2, . . . , n are correlated,

var(FN) = O(N)

under Poisson p.p. Π.

.
Proposition
..

.

. ..

.

.

Under Ginibre p.p. and its Palm measures,

var(FN) = O(1)

by negative correlation.
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. . . . . .

Idea of the proof for singularity (2)

FN(ξ) :=
1

N

N∑
k=1

(ξ(Dk)− k) for ξ =
∑

i δzi

.
Theorem
..

.

. ..

.

.

For m ∈ N and 0m = (0, 0, . . . , 0) ∈ Cm, then

lim
N→∞

FN(ξ) = −m, weakly in L2(µ0m)

From this theorem, we see that for 0n ∈ Cn and 0m ∈ Cm with
n ̸= m, µ0n and µ0m are mutually singular, µ0n ⊥ µ0m .

For general a ∈ Cn and b ∈ Cm,

µa ∼ µ0n ⊥ µ0m ∼ µb
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. . . . . .

Concluding remarks and open questions

...1 Absolute continuity for general DPP. Can we give a criterion for
absolute continuity in terms of K (z ,w) and λ(dz)? More concretely,
radially symmetric DPP on C may be next target, for example.

...2 Is it true that singularity are inherited via two mappings:

∞∏
i=1

C ∋ (Y1,Y2, . . . ) 7→
∞∑
i=1

δYi
∈ Conf ([0,∞))

Conf (C) ∋
∞∑
i=1

δzi 7→
∞∑
i=1

δ|zi |2 ∈ Conf ([0,∞))

...3 Point processes on C defines probability measures on entire functions
by Hadamard product. How does a point process affect random entire
function? Can we say something about absolute continuity from
properties of random entire functions obtained from point processes?
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. . . . . .

舟木さん，:
還暦おめでとうございます．
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