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1. Introduction

Dyson’s Brownian motion model [Dyson 62] is a one parame-

ter family of the systems solving the following stochastic differential

equation:

Xj(t) = xj + Bj(t) +
β

2

∑
k:1≤k≤n

k 6=j

∫ t

0

ds

Xj(s) − Xk(s)
, 1 ≤ j ≤ n

where Bj(t), j = 1,2, . . . , n are independent one dimensional Brown-

ian motions.

In the system, interaction between any pair of particles is repulsive

and its strength is proportional to the inverse of particle distance

with proportional constant β/2 > 0.

We consider the case that β = 2 and call the model in the special

case the Dyson model.
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The Dyson model is realized by the following three processes:

(i) The process of eigenvalues of Hermitian matrix valued diffusion

process in the Gaussian unitary ensemble (GUE).

(ii) The system of one-dimensional Brownian motions conditioned

never to collide with each other.

(iii) The harmonic transform of the absorbing Brownian motion in

a Weyle chamber of type An−1:

Wn =
{
x = (x1, x2, · · · , xn) : x1 < x2 < · · · < xn

}
.

with harmonic function given by the Vandermonde determinant:

hn(x) =
∏

1≤j<k≤n

(xk − xj) = det
1≤j,k≤n

[
x

j−1
k

]
.
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The configuration space of unlabelled particles:

M =
{
ξ : ξ is a nonnegative integer valued Radon measures in R

}
Any element ξ of M can be represented as:

ξ(·) =
∑
j∈I

δxj(·)

with some sequence (xj)j∈I of R satisfying ]{j ∈ I : xj ∈ K} < ∞, for

any compact set K. The index set I is countable.

M is a Polish space with the vague topology: we say ξn converges

to ξ vaguely, if

lim
n→∞

∫
R

ϕ(x)ξn(dx) =
∫
R

ϕ(x)ξ(dx)

for any ϕ ∈ C0(R), where C0(R) is the set of all continuous real-

valued functions with compact supports.

4



For the solution (Xj(t), j = 1,2, , . . . , n) of

Xj(t) = xj + Bj(t) +
∑

k:1≤k≤n
k 6=j

∫ t

0

ds

Xj(s) − Xk(s)
, 1 ≤ j ≤ n,

we put

ξn(t) =
n∑

j=1

δXj(t)
, t ∈ [0,∞),

which is an M-valued diffusion process starting from the configura-

tion ξ =
n∑

j=1

δxj. We denote the process by (ξn(t), Pξ) and call it the

Dyson model with unlabeled particles.
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The moment generating function of multitime distribution of a M-

valued process ξ(t) is defined as

Ψt(f) = E

exp{ M∑
m=1

∫
R

fm(x)ξ(tm, dx)
}

for t = (t1, t2, . . . , tM) with 0 ≤ t1 < t2 < · · · < tM , and f =

(f1, f2, . . . , fM) with fm ∈ C0(R),1 ≤ m ≤ M .

Set χm(·) = efm(·) − 1,1 ≤ m ≤ M .

Ψt(f) =
∑

Nm≥0,
1≤m≤M

∫∏M
m=1 RNm

M∏
m=1

 1

Nm!
dx(m)

Nm

Nm∏
i=1

χm

(
x
(m)
i

)
×ρ

(
t1, x(1)

N1
; . . . ; tM , x(M)

NM

)
,

with the multitime correlation functions ρ

(
t1, x(1)

N1
; . . . ; tM , x(M)

NM

)
.
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A processs ξ(t) is said to be determinantal if the moment gener-

ating function of the multitime distribution is given by a Fredholm

determinant

Ψt[f ] = Det
(s,t)∈(t1,t2,...,tM)2,

(x,y)∈R2

[
δstδx(y) + K(s, x; t, y)χt(y)

]
,

In other words, the multitime correlation functions are represented

as

ρ

(
t1, x(1)

N1
; . . . ; tM , x(M)

NM

)
= det

1≤j≤Nm,1≤k≤Nn
1≤m,n≤M

K(tm, x
(m)
j ; tn, x

(n)
k )

,
0 < t1 < · · · < tM < ∞, x(m)

Nm
= (x(m)

1 , . . . , x
(m)
Nm

) ∈ RNm, 1 ≤ m ≤ M ,

(N1, . . . , NM) ∈ NM , M ∈ N. The function K is called the correlation

kernel of the determinantal process.
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The Dyson model ξn(t) starting from the origin is the determinantal

process with the correlation kernel Kn:

Kn(s, x; t, y) =


1√
2s

n−1∑
k=0

(
t

s

)k/2
ϕk

(
x√
2s

)
ϕk

(
y√
2t

)
, if s ≤ t,

−
1√
2s

∞∑
k=n

(
t

s

)k/2
ϕk

(
x√
2s

)
ϕk

(
y√
2t

)
, if s > t.

where

ϕk(x) = {
√

π2kk!}−1/2Hk(x)e
−x2/2

is the normalized orthogonal functions on R comprising the Hermite

polynomials Hk(x)
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[Bulk scaling limit] As n → ∞, the process ξn(n + t) converges

the infinite dimensional determinantal process (ξsin(t), P ) whose cor-

relation kernel Ksin comprising trigonometrical functions:

Ksin(s, x; t, y) =



1

π

∫ 1

0
du e(t−s)u2/2 cos(u(x − y)), if s < t,

sin(x − y)

π(x − y)
, if s = t,

−
1

π

∫ ∞

1
du e(t−s)u2/2 cos(u(x − y)), if s > t.

The process is reversible process with reversible measure µsin the

determinanatal point process with the sine kernel

Ksin(x, y) = Ksin(0, x; 0, y).

[Nagao-Forrester (1998)]

Theorem [Katori-T:to appear in MPRF]

The process (ξsin(t), P ) is a continuos reversible Markov process.
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[Soft edge scaling limit] As n → ∞, the scaled process

θa(n,t)ξ
n(n1/3 + t) ≡ {Xj(n

1/3 + t) − a(n, t)}n
j=1,

with a(n, t) = 2n2/3 + n1/3t − t2/4, converges to the infinite dimen-
sional determinantal process (ξAi(t), P ) whose correlation kernel KAi

comprising the Airy function Ai(x):

KAi(s, x; t, y) =


∫ 0

−∞
du e(t−s)u/2Ai(x − u)Ai(y − u), if s ≤ t,

−
∫ ∞

0
du e(t−s)u/2Ai(x − u)Ai(y − u), if s > t.

The process is reversible process with reversible measure µsin the
determinanatal point process with the Airy kernel

KAi(x, y) =


Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y
if x 6= y

(Ai′(x))2 − x(Ai(x))2 if x = y,

[Forrester-Nagao-Honner (1999)],[Prähofer-Spohn (2002)]

Theorem [Katori-T:to appear in MPRF]
The process (ξAi(t), P ) is a continuos reversible Markov process.
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2. Dirichlet forms

A function f defined on the configuration space M is local if f(ξ) =

f(ξK) for some compact set K. A local function f is smooth if

f(
∑n

j=1 δxj) = f̃(x1, x2, . . . , xn) with some smooth function f̃ on Rn.

We put

D0 = {f : f is local and smooth with compact support}.

Put

D[f, g](ξ) =
1

2

ξ(K)∑
j=1

∂f̃

∂xj

∂g̃

∂xj
, f, g ∈ D0,

and for a probability measure µ on M we introduce the bilinear form

Eµ(f, g) =
∫
M

D[f, g]dµ, f, g ∈ D0.
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Let Φ be a free potential, Ψ be an interaction potential. For a

given sequence {br} of positive integers we introduce a Hamiltonian

on Sr = (−br, br):

Hr(ξ) = HΦ,Ψ
r (ξ) =

∑
xj∈Sr

Φ(xj) +
∑

xj,xk∈Sr,j<k

Ψ(xj, xk)

We put Mm
r = {ξ ∈ M : ξ(Sr) = m} and µm

r = µ(· ∩ Mm
r ).

Definition(quasi Gibbs measure) A probability measure µ is said

to be a (Φ,Ψ)-quasi Gibbs measure if there exists an increasing

sequence {br} of positive integers and measures {µm
r,k} such that for

each r, m ∈ N satisfying

µm
r,k ≤ µm

r,k+1, k ∈ N, lim
k→∞

µm
r,k = µm

r ,weekly

and that for all r, m, k ∈ N and for µm
r,k-a.s. ξ ∈ M

c−1e−Hr(ζ)1Mm
r
(ζ)Λ(dζ) ≤ µm

r,k(πSr ∈ dζ|ξSc
r
) ≤ ce−Hr(ζ)1Mm

r
(ζ)Λ(dζ)

Here Λ is the Poisson random measure with intensity measure dx.
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(A.1) µ has a locally bounded correlation functions ρ(xn), n ∈ N.

(A.2) µ is a (Φ,Ψ)-quasi Gibbs measure.

(A.3) There exist upper semicontinuous functions Φ0, Ψ0, and pos-

itive constants C and C′ such that for any x, y ∈ R

C−1Φ0(x) ≤ Φ(x) ≤ CΦ0(x),

C′−1Ψ0(x − y) ≤ Ψ(x, y) ≤ C′Ψ0(x − y), Ψ0(x) = Ψ0(−x)

Moreover, Φ0 and Ψ0 are locally bounded from below and

{Ψ0(x) = ∞} is compact.
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Theorem [Osada :arXiv:math.PR/0902.3561]

Assume (A.1), (A.2) and (A.3). Then

(1) (Eµ,D0, L2(M, µ)) is closable,

(2) its closure (Eµ,Dµ, L2(M, µ)) is a local quasi regular Dirichlet

space,

(3) there exists a µ-reversible diffusion process (Ξ(t), P ) associated

with the Diriclet space.

Corollary [Osada :arXiv:math.PR/0902.3561]

The probability measure µsin satisfies (A.1), (A.2) and (A.3) with

Φ(x) = 0 and Ψ(x) = −2 log |x−y|, and there exists a µsin-reversible

diffusion process (Ξsin(t), P ) associated with the Diriclet space.
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Theorem 1
The probability measure µAi satisfies (A.1), (A.2) and (A.3) with

Φ(x) = 0 and Ψ(x) = −2 log |x−y|, and there exists a µAi-reversible

diffusion process (ΞAi(t), P ) associated with the Diriclet space.

Remark. It is proved that the process (ξAi(t), P ) is associated

with a Diriclet space (E,D) which is a closed extension of the pre-

Dirichlet space (EµAi,D0, L2(M, µAi)). Then we see that DµAi ⊂ D.

Our conjecture is the coinsidence of the above two Dirichlet spaces,

i.e. DµAi = D.
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3. SDE for the process (ΞAi(t), P )

Theorem 2
The process ΞAi(t) =

∑
j∈N δXj(t)

satisfies the following SDE:

dXj(t) = dBj(t) + lim
L→∞

{ ∑
k 6=j:|Xk(t)|<L

1

Xj(t) − Xk(t)

−
∫
|u|<L

ρ̂(u)

−u
du

}
dt, j ∈ N,

where Bj(t), j ∈ N are independent Brownian motions and

ρ̂(u) =

√
−u

π
1(u < 0).
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Remark In the above SDE we can replace the function ρ̂(u) to a

function ρ(u) satisfying the following conditions:

(1)
∫
R

|ρ(u) − ρ̂(u)|
−u

dx < ∞,

(2) lim
L→∞

∫
|u|<L

ρ(u) − ρ̂(u)

−u
dx = 0.

The density functions ρAi(u) = KAi(u, u) of µAi, and ρAi
x (u) of the

palm measure µAi
x satisfy the condition (1), however, it has not been

shown if they satisfy the condition (2). Note that in the case that

the density function ρAi(u) is considered the integral implies Cauchy

principal value.
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Let µk be the Campbell measure of µ:

µk(A × B) =
∫
A

µxk(B)ρ(xk)dxk, A ∈ B(Rk), B ∈ B(M).

We call dµ ∈ L1
loc(R × M, µ1) the log derivative of µ if dµ satisfies∫

R×M
dµ(x, η)f(x, η)dµ1 = −

∫
R×M

∇xf(x, η)dµ1,

for any f ∈ C∞
0 (R) ⊗D0.

For f, g ∈ C∞
0 (Rk) ⊗D0

∇k[f, g](xk, η) =
1

2

k∑
j=1

∂f(xk, η)

∂xj

∂g(xk, η)

∂xj
,

Dk[f, g](xk, η) = ∇k[f, g](xk, η) + D[f(xk, ·), g(xk, ·)](η),
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Let (Ek, C∞
0 (Rk) ⊗D0) be the bilinear form defined by

Ek(f, g) =
∫
Rk×M

Dk[f, g]dµk.

(a.1) ρk is locally bounded for each k ∈ N.

(a.2) (Ek, C∞
0 (Rk) ⊗D0) is closable on L2(µk) for each k ∈ N.

Theorem [Osada, JMSJ 2010]

Assume (a.1) and (a.2). Then the closure (Ek,Dk, L2(Rk×M, µk) of

(Ek, C∞
0 (Rk) ⊗ D0, L2(Rk × M, µk)) is a local quasi regular Dirichlet

space, and the associated diffusion process ((Xk(t), Ξ̂(t)), P ) exists.
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(a.3) There exists a log derivative dµ.

(a.4) Cap(M \ M∞) = 0,

where M∞ = {ξ ∈ M : ξ(x) ≤ 1, ∀x ∈ R, ξ(R) = ∞}.

(a.5) There exists T > 0 such that for each R > 0

lim inf
r→∞

(∫
|x|≤R+r

ρ(x)dx
∫ ∞

r/
√

(r+R)T
e−u2/2du

)
= 0

Theorem [Osada, PTRF (on line first)]

Assume (a.1) - (a.5). There exists M0 ⊂ M∞ such that µ(M0) = 1,

and for any ξ =
∑

j∈N δxj ∈ M0, there exists RN-valued continuous

process X(t) satisfying X(0) = x = (xj)
∞
j=1

dXj(t) = dBj(t) + dµ

Xj(t),
∑

k:k 6=j

δXk(t)

 dt, j ∈ N
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The key part in the proof of Th 2 is to determine the log derivative

of µAi.

Lemma 3 For x ∈ R and η =
∑
j∈N

δyj with η({x}) = 0,

dµAi (x, η) = lim
L→∞


∑

j:|x−yj|≤L

1

x − yj
−
∫
|u|≤L

ρ̂(u)

−u
du


Remark [Osada, PTRF (on line first)] For x ∈ R and η =

∑
j∈N

δyj

with η({x}) = 0,

dµsin (x, η) = lim
L→∞


∑

j:|x−yj|≤L

1

x − yj


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To prove Lemma 3 we use the distribution of n particles in GUE

system is

µn
GUE(u1, u2, . . . , un) =

1

Z

∏
i<j

|ui − uj|2 exp

−
n∑

i=1

|ui|2

2

 ,

We put uj = 2
√

n +
xj

n1/6 and intrduce the measure defined by

µn
A(x1, x2, . . . , xn) =

1

Z

∏
i<j

|xi − xj|2 exp

−
n∑

i=1

|2
√

n + n−1/6xi|2

2

 ,

which is the determinantal point process with the correlation kernel

Kn
A(x, y) = n1/3Ψn(x)Ψn−1(y) − Ψn−1(x)Ψn(y)

x − y

with

Ψn(x) = n1/12ϕn

(√
2n +

x√
2n1/6

)
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The palm measure µn
A,z is also a determinantal point process and

its kernel is represented as

Kn
A,z = Kn

A(x, y) −
Kn

A(x, z)Kn
A(z, y)

Kn
A(x, z)

.

Note that

lim
n→∞Kn

A(x, y) = KAi(x, y) and lim
n→∞Kn

A,z(x, y) = KAi
z (x, y)

and

lim
n→∞µn

A = µAi and lim
n→∞µn

A,z = µAi
z .

In particular

lim
n→∞ ρn

A(x) = ρAi(x) and lim
n→∞ ρn

A,z(x) = ρAi
z (x),

and

µn,1(dxdη) ≡ µn
A,x(dη)ρA(x)dx → µn,1(dxdη), vaguely n → ∞.
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The log derivative dn of the measure µn
A is given by

dn(x, η) = dn

x,
n−1∑
j=1

δyj

 =
n−1∑
j=1

1

x − yj
− n1/3 −

n−1/3

2
x.

We divide dn into three parts:

dn(x, η) = gn
L(x, η) + wn

L(x, η) + un(x),

with

gn
L(x, η) =

∑
|x−yj|<L

1

x − yj
−
∫
|x−u|<L

ρn
A,x(u)

x − u
du,

wn
L(x, η) =

∑
|x−yj|≥L

1

x − yj
−
∫
|x−u|≥L

ρn
A,x(u)

x − u
du,

un(x) =
∫
R

ρn
A,x(u)

x − u
du − n1/3 −

n−1/3

2
x.
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Lemma 3 is derived from the fact that

dµAi
(x, η) = lim

n→∞dn(x, η) = lim
L→∞


∑

|x−yj|<L

1

x − yj
−
∫
|u|≤L

ρ̂(y)

−y
du


if the following conditions hold:

lim
n→∞ gn

L(x, η) = gL(x, η), in Lp̂(µ1) for any L > 0, (1)

lim
L→∞

lim sup
n→∞

∫
[−r,r]×M

|wn
L(x, y)|p̂dµn,1(dxdη) = 0, (2)

lim
n→∞un(x) = u(x), in L

p̂
loc(R, dx) , (3)

with

gL(x, η) =
∑

|x−yj|<L

1

x − yj
−
∫
|x−u|<L

ρAi
x (u)

x − u
du,

and

u(x) = lim
L→∞

{∫
|u|≤L

ρAi
x (u)

x − u
du −

∫
|u|≤L

ρ̂(u)

−u
du

}
∈ L

p̂
loc(R, dx).
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The first condition:

lim
n→∞ gn

L(x, η) = gL(x, η), in Lp̂(µ1) for any L > 0,

(∵) Since

gL(x, η) − gn
L(x, η) = −

∫
|x−u|<L

ρAi
x (u) − ρn

A,x(u)

x − u
du,

The claim is derived from

lim
n→∞ ρn

A,x(u) = ρAi
x (u)

and the behavior of ρn
A,x(u) and ρAi

x (u) around x.
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The second condition:

lim
L→∞

lim sup
n→∞

∫
[−r,r]×M

|wn
L(x, y)|p̂dµn,1(dxdη) = 0,

(∵)

Since
∫
M

∑
|x−yj|≥L

1

x − yj
dµn

A,x(dη) =
∫
|x−u|≥L

ρn
A,x(u)

x − u
du, we have

wn
L(x, η) =

∑
|x−yj|≥L

1

x − yj
−
∫
M

∑
|x−yj|≥L

1

x − yj
dµn

A,x(dη)

Since µn
A,x(dη) is a determinantal point process, for any bounded

closed interval D of R, we have∫
M

µn
A,x(dη)

∣∣∣∣η(D)−
∫
D

ρn
A,x(u)du

∣∣∣∣2k
≤
(
3
∫
D

ρn
A,z(u)du

)k
≤
(
3
∫
D

ρAi
x (u)du

)k
,

for k, n ∈ N.
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Let ξ ∈ M and ρ be the nonnegative function on R. Suppose that

there exist ε ∈ (0,1), C1 > 0 and L1 > 0 such that∣∣∣∣∣ξ([0, L]) −
∫ L

0
ρ(x)dx

∣∣∣∣∣ ≤ C1Lε,

∣∣∣∣∣ξ([−L,0)) −
∫ 0

−L
ρ(x)dx

∣∣∣∣∣ ≤ C1Lε, L ≥ L1.

then ξ satisfies ∣∣∣∣∣
∫
|x|≥L

ρ(x)dx − ξ(dx)

x

∣∣∣∣∣ ≤ 3C1

1 − ε
Lε−1.
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The third condition:

lim
n→∞un(x) = u(x), in L

p̂
loc(R, dx) ,

(∵) We put

ρ̂n
sc(x) =

1

π

√
−x

(
1 +

x

4n2/3

)
1(−4n2/3 < x < 0).

We note that ρ̂n
sc(x) ↗ ρ̂(x), n → ∞ and∫

R
dx ρ̂n

sc(x) = n, and
∫
R

ρ̂n
sc(u)

−u
du = n1/3.

Then

un(x) =
∫
R

ρn
A,x(u)

x − u
du −

∫
R

ρ̂n
sc(u)

−u
du −

n−1/3

2
x.

→ lim
L→∞

{∫
|u|≤L

ρAi
x (u)

x − u
du −

∫
|u|≤L

ρ̂(u)

−u
du

}
= u(x) n → ∞.
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Remarak. Consider the diffusion process associated with the

Dirichlet space

Eµn
A(f, g) =

∫
M

D[f, g]dµn
A.

The infinitesimal generator associated with the process is geven by

Ln =
1

2

n∑
i=1

d2

dx2
i

+
n∑

i=1

dn(xi, {x1, . . . , xi−1, xi+1, . . . , xn})
d

dxi

and the process is associated with (Yj(t) − n1/3)n
j=1, where Y(t) is

another Dyson model, noncolliding Ornstein-Uhlenbeck processes:

dYj(t) = dBj(t) +
∑

k:1≤k≤n
k 6=j

dt

Yj(t) − Yk(t)
−

n−1/3

2
dYj(t), 1 ≤ j ≤ n

We can show that
n∑

j=1

δ
Yj(t)−n1/3 → ξAi(t), n → ∞.
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