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I G. Edelman, O. Sporns and G. Tononi [PNAS 1994] have
proposed a definition of complexity for neural networks. This
concept can be interpreted as a functional on probability laws
on a finite space

I A complex (random) system should display a combination of
high differentiation (local independence) and high integration
(global correlation).

I The aim of our work is to explore this concept mathematically
and in particular to explain properties of random systems with
high neural complexity.

I We study the order of magnitude of maximal neural
complexity for fixed system size and the properties of
maximizers as the system size grows to infinity.
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Entropy

Let X be a E -valued r.v. with E finite. The entropy of X is

H(X ) := −
∑
x∈E

PX (x) log(PX (x)), PX (x) := P(X = x),

where we adopt the convention

0 · ∞ = 0.

The entropy is a measure of the randomness of X . We recall that

0 ≤ H(X ) ≤ log |E |,

with H(X ) = 0 iff X is constant and H(X ) = log |E | iff X is
uniform.

Lorenzo Zambotti (Paris 6) Kochi, 5th december 2011



Mutual Information

Given a couple (X ,Y ) we have

max{H(X ),H(Y )} ≤ H(X ,Y ) ≤ H(X ) + H(Y )

and

1. H(X ,Y ) = H(X ) iff Y is a function of X

2. H(X ,Y ) = H(X ) + H(Y ) iff (X ,Y ) is independent.

Then we define the Mutual Information of (X ,Y )

MI(X ,Y ) := H(X ) + H(Y )− H(X ,Y ) ≥ 0.

MI is a measure of the dependence between (X ,Y ), more precisely
of the randomness shared by the couple.
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Neural complexity

Edelman-Sporns-Tononi [PNAS 1994] consider a finite system of
N = |I | r.v. X = (Xi )i∈I with Xi ∈ {0, 1} and define the neural
complexity as

N∑
k=0

1(N
k

) ∑
S⊂I , |S|=k

MI(XS ,XSc ),

where
XS := (Xi , i ∈ S), XSc := (Xi , i ∈ Sc).

By convention, MI (X∅,XI ) = MI (XI ,X∅) = 0.

The neural complexity of X is zero whenever

1. X is an independent family (chaos)

2. X is a deterministic family (order).
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Neural complexity

We adopt rather the following definition

I(X ) :=
1

N + 1

N∑
k=0

1(N
k

) ∑
S⊂I , |S |=k

MI(XS ,XSc ).

Then

1. I(X ) is invariant under permutations of (Xi )i∈I

2. I is weakly additive, i.e. I(X ,Y ) = I(X ) + I(Y ) whenever
X and Y are independent
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Maximal neural complexity

It is easy to find systems with minimal (null) neural complexity.
But what about systems with maximal neural complexity? This is
harder. Let

IN := sup{I(X ) : X = (Xi )i∈I , |I | = N}.

By super-additivity we find lim
N→∞

IN
N

= sup
N≥1

IN
N

.

What is this limit?
We define

1. X = (X1, . . . ,XN) is a maximizer if I(X ) = IN
2. (X N)N is an approximate maximizer if

lim
N→∞

I(X N)

N
= lim

N→∞

IN
N
.

What do maximizers and approximate maximizers look like?
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Maximizers

We can characterize maximizers only for N = 2, 3, since in this
case it is possible to maximize each mutual information separately.
For large N we know that

1. Exchangeable systems have small neural complexity. More
precisely

sup
(X1,...,XN) exchangeable

I(X ) = o(N2/3+ε), N → +∞,

for any ε > 0. In particular maximizers are neither unique nor
exchangeable.

2. if X is a maximizer, then its support does not exceed a fixed
proportion of the configuration space.

The first property is an example of a spontaneous symmetry
breaking.
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Main result

1. For any sequence X N = (X N
1 , . . . ,X

N
N )

lim sup
N→∞

I(X N)

N log 2
≤ 1

4
.

2. For any sequence X N = (X N
1 , . . . ,X

N
N ) such that

lim
N→∞

H(X N)

N log 2
= x ∈ [0, 1],

we have

lim sup
N→∞

I(X N)

N log 2
≤ x(1− x).

3. For all x ∈ [0, 1] there is at least a sequence X N such that

lim
N→∞

H(X N)

N log 2
= x , lim

N→∞

I(X N)

N log 2
= x(1− x).
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Random Sparse Configurations

Let N ≥ 2 and 1 ≤ M ≤ N be an integer. We denote

Λn := {0, 1}n, ∀ n ≥ 1.

We consider a family (Wi )i∈ΛM
of i.i.d. variables, each uniformly

distributed on ΛN . We define a random probability measure on ΛN

µN,M(x) := 2−M
∑
i∈ΛM

1(x=Wi ), x ∈ ΛN .

Theorem
Let x ∈ ]0, 1[. We have a.s. and in L1

lim
N→+∞

H(µN,bxNc)

N log 2
= x (1)

lim
N→+∞

I(µN,bxNc)

N log 2
= x(1− x). (2)
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Proof

By the symmetries

E

(
I(µN,bxNc)

N log 2

)
=

2

N + 1

N∑
k=0

hk − hN .

One can show a sharp transition for hk

1. For k ≤ M we have k − 2
k−M

2 ≤ hk ≤ k

2. For k > M we have M − 2M−k ≤ hk ≤ M
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Approximate maximizers

This sequence satisfies the following property: as N → +∞,

1. if y ∈ ]0, x ] then for almost all subsets S with |S | = byNc, XS

is almost uniform, i.e. almost independent;

2. if y ∈ [x , 1[ then for almost all subsets S with |S | = byNc, X
is almost a function of XS .

It turns out that the same property is shared by any sequence of
approximate maximizers.
This property describes the interplay between differentiation and
integration that biologists expect to find in complex systems.
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New questions and problems

1. How to maximize under further constraints?

2. Is there any evolutionary (learning) mechanism with
interesting interplay with neural complexity?

3. How to combine N.C. with an underlying geometry?

4. How to estimate the N.C. of a real system?

5. Is it possible to detect critical phenomena (epidemics)

6. How to compute N.C. of classical systems, like the Ising
model?

7. Is there an interpretation in terms of Information theory?
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