Strong Markov property of determinatal processes associated with extended kernels

HIDEKI TANEMURA, CHIBA UNIVERSITY

We denote by \mathfrak{M} the space of nonnegative integer-valued Radon measures on \mathbb{R} , which is a Polish space with the vague topology. Any element ξ of \mathfrak{M} can be represented as $\xi(\cdot) = \sum_{j \in \Lambda} \delta_{x_j}(\cdot)$ with a sequence of points in \mathbb{R} , $\boldsymbol{x} = (x_j)_{j \in \Lambda}$ satisfying $\xi(K) = \sharp\{x_j : x_j \in K\} < \infty$ for any compact subset $K \subset \mathbb{R}$. The index set $\Lambda = \mathbb{N} \equiv \{1, 2, ...\}$ or a finite set. We call an element ξ of \mathfrak{M} an unlabeled configuration, and a sequence \boldsymbol{x} a labeled configuration. As a generalization of a notion of determinantal point process on \mathbb{R} for a probability measure on \mathfrak{M} , we give the following definition for \mathfrak{M} -valued processes.

Definition 1 An \mathfrak{M} -valued process $(\mathbb{P}, \Xi(t), t \in [0, \infty))$ is said to be determinantal with the correlation kernel \mathbb{K} , if for any $M \geq 1$, any sequence $(N_m)_{m=1}^M$ of positive integers, any time sequence $0 < t_1 < \cdots < t_M < \infty$, the (N_1, \ldots, N_M) -multitime correlation function is given by a determinant,

$$\rho\left(t_{1},\xi^{(1)};\ldots;t_{M},\xi^{(M)}\right) = \det_{\substack{1 \le j \le N_{m},1 \le k \le N_{n} \\ 1 \le m,n \le M}} \left[\mathbb{K}(t_{m},x_{j}^{(m)};t_{n},x_{k}^{(n)})\right],$$

where $\xi^{(m)}(\cdot) = \sum_{j=1}^{N_m} \delta_{x_j^{(m)}}(\cdot), 1 \leq m \leq M.$

We consider the determinatal processes $(\mathbb{P}^{\xi}, \Xi(t))$ associated with the extended sine kernel, extended Airy kernel and extended Bessel kernel. These processes are reversible Markov process [1]. In this talk we discuss the following:

- 1. The Strong Markov property of the processes
- 2. The SDEs and Dirichlet forms related to the processes

References

- Katori, M., Tanemura, H.: Markov property of determinantal processes with extended sine, Airy, and Bessel kernels. Markov process Relat. Fields 17, 541-580 (2011)
- [2] Osada, H., Tanemura, H.: Strong solutions of infinite-dimensional stochastic differential equations and tail σ -fields. (in preparation)